Quantum Natural Gradient with Geodesic Corrections for Small Shallow Quantum Circuits

Mourad Halla
{"title":"Quantum Natural Gradient with Geodesic Corrections for Small Shallow Quantum Circuits","authors":"Mourad Halla","doi":"arxiv-2409.03638","DOIUrl":null,"url":null,"abstract":"The Quantum Natural Gradient (QNG) method enhances optimization in\nvariational quantum algorithms (VQAs) by incorporating geometric insights from\nthe quantum state space through the Fubini-Study metric. In this work, we\nextend QNG by introducing higher-order integrators and geodesic corrections\nusing the Riemannian Euler update rule and geodesic equations, deriving an\nupdated rule for the Quantum Natural Gradient with Geodesic Correction (QNGGC).\nQNGGC is specifically designed for small, shallow quantum circuits. We also\ndevelop an efficient method for computing the Christoffel symbols necessary for\nthese corrections, leveraging the parameter-shift rule to enable direct\nmeasurement from quantum circuits. Through theoretical analysis and practical\nexamples, we demonstrate that QNGGC significantly improves convergence rates\nover standard QNG, highlighting the benefits of integrating geodesic\ncorrections into quantum optimization processes. Our approach paves the way for\nmore efficient quantum algorithms, leveraging the advantages of geometric\nmethods.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Quantum Natural Gradient (QNG) method enhances optimization in variational quantum algorithms (VQAs) by incorporating geometric insights from the quantum state space through the Fubini-Study metric. In this work, we extend QNG by introducing higher-order integrators and geodesic corrections using the Riemannian Euler update rule and geodesic equations, deriving an updated rule for the Quantum Natural Gradient with Geodesic Correction (QNGGC). QNGGC is specifically designed for small, shallow quantum circuits. We also develop an efficient method for computing the Christoffel symbols necessary for these corrections, leveraging the parameter-shift rule to enable direct measurement from quantum circuits. Through theoretical analysis and practical examples, we demonstrate that QNGGC significantly improves convergence rates over standard QNG, highlighting the benefits of integrating geodesic corrections into quantum optimization processes. Our approach paves the way for more efficient quantum algorithms, leveraging the advantages of geometric methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅层小量子电路的量子自然梯度与大地校正
量子自然梯度(QNG)方法通过富比研究度量结合量子态空间的几何见解,增强了优化不变量子算法(VQAs)。在这项工作中,我们利用黎曼欧拉更新规则和大地方程引入了高阶积分器和大地校正,从而扩展了量子自然梯度(QNG)。我们还开发了计算这些修正所需的 Christoffel 符号的高效方法,利用参数偏移规则实现量子电路的直接测量。通过理论分析和实际例子,我们证明 QNGGC 比标准 QNG 显著提高了收敛率,突出了将大地校正集成到量子优化过程中的好处。我们的方法利用几何方法的优势,为更高效的量子算法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1