Yanhong Bian, Aaron M. Leininger, Weilan Zhang, Yanna Liang, Zhiyong Jason Ren
{"title":"Co-valorization of Food Waste and CO2 to Produce Volatile Fatty Acids Using Liter-Scale Tubular Microbial Electrosynthesis Cells","authors":"Yanhong Bian, Aaron M. Leininger, Weilan Zhang, Yanna Liang, Zhiyong Jason Ren","doi":"10.1021/acsestengg.4c00218","DOIUrl":null,"url":null,"abstract":"This study presents the simultaneous conversion of food waste and CO<sub>2</sub> into volatile fatty acids (VFAs) using a 6 L tubular microbial electrosynthesis cell (MES). The MES reactor uses a bioanode to convert food waste into current and CO<sub>2</sub>, while on the cathode, H<sub>2</sub> is produced and subsequently consumed by cathode microbes for the conversion of CO<sub>2</sub> to VFAs. The study reveals that system performance is impacted by organic loading, applied voltage, and flow rate, and optimal operational conditions achieve a VFA titer of 1763 mg/L with the Coulombic efficiency (CE) exceeding 90% at the anode, highlighting efficient electron recovery from food waste. Resistance analysis indicates that the cathode contributed most to system resistance, while microbial community analysis shows a synergy between fermentative and electroactive bacteria in the anode and dominant acetogens in the cathode, facilitating efficient electron recovery and VFA synthesis, respectively. The research underscores the tubular MES’s potential for sustainable food waste treatment and CO<sub>2</sub> valorization into valuable VFAs, contributing to waste management and greenhouse gas mitigation strategies.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"8 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the simultaneous conversion of food waste and CO2 into volatile fatty acids (VFAs) using a 6 L tubular microbial electrosynthesis cell (MES). The MES reactor uses a bioanode to convert food waste into current and CO2, while on the cathode, H2 is produced and subsequently consumed by cathode microbes for the conversion of CO2 to VFAs. The study reveals that system performance is impacted by organic loading, applied voltage, and flow rate, and optimal operational conditions achieve a VFA titer of 1763 mg/L with the Coulombic efficiency (CE) exceeding 90% at the anode, highlighting efficient electron recovery from food waste. Resistance analysis indicates that the cathode contributed most to system resistance, while microbial community analysis shows a synergy between fermentative and electroactive bacteria in the anode and dominant acetogens in the cathode, facilitating efficient electron recovery and VFA synthesis, respectively. The research underscores the tubular MES’s potential for sustainable food waste treatment and CO2 valorization into valuable VFAs, contributing to waste management and greenhouse gas mitigation strategies.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.