Shear and transport in a flow environment determine spatial patterns and population dynamics in a model of nonlocal ecological competition

Nathan O. Silvano, João Valeriano, Emilio Hernández-García, Cristóbal López, Ricardo Martinez-Garcia
{"title":"Shear and transport in a flow environment determine spatial patterns and population dynamics in a model of nonlocal ecological competition","authors":"Nathan O. Silvano, João Valeriano, Emilio Hernández-García, Cristóbal López, Ricardo Martinez-Garcia","doi":"arxiv-2409.04268","DOIUrl":null,"url":null,"abstract":"Populations very often self-organize into regular spatial patterns with\nimportant ecological and evolutionary consequences. Yet, most existing models\nneglect the effect that external biophysical drivers might have both on pattern\nformation and the spatiotemporal population dynamics once patterns form. Here,\nwe investigate the effect of environmental flows on pattern formation and\npopulation dynamics using a spatially nonlocal logistic model (or\nFisher-Kolmogorov equation) coupled to a simple shear and a Rankine vortex\nflow. We find that, whereas population abundance generally decreases with\nincreasing flow intensity, the effect of the flow on the pattern instability\ndepends on the spatial structure of the flow velocity field. This result shows\nthat the velocity field interacts with the spatial feedbacks responsible for\npattern formation in non-trivial ways, leading to a variety of spatiotemporal\npopulation dynamics regimes in which the total population abundance can exhibit\neither regular oscillations with a characteristic frequency or more erratic\ndynamics without a well-defined period. More generally, the diversity of\nspatiotemporal population dynamics caused by the interplay between\nself-organizing feedbacks and environmental flows highlights the importance of\nincorporating environmental and biophysical processes when studying both\necological pattern formation and its consequences.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Populations very often self-organize into regular spatial patterns with important ecological and evolutionary consequences. Yet, most existing models neglect the effect that external biophysical drivers might have both on pattern formation and the spatiotemporal population dynamics once patterns form. Here, we investigate the effect of environmental flows on pattern formation and population dynamics using a spatially nonlocal logistic model (or Fisher-Kolmogorov equation) coupled to a simple shear and a Rankine vortex flow. We find that, whereas population abundance generally decreases with increasing flow intensity, the effect of the flow on the pattern instability depends on the spatial structure of the flow velocity field. This result shows that the velocity field interacts with the spatial feedbacks responsible for pattern formation in non-trivial ways, leading to a variety of spatiotemporal population dynamics regimes in which the total population abundance can exhibit either regular oscillations with a characteristic frequency or more erratic dynamics without a well-defined period. More generally, the diversity of spatiotemporal population dynamics caused by the interplay between self-organizing feedbacks and environmental flows highlights the importance of incorporating environmental and biophysical processes when studying both ecological pattern formation and its consequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流动环境中的剪切力和迁移决定了非局部生态竞争模型中的空间模式和种群动态
种群通常会自我组织成有规律的空间模式,从而产生重要的生态和进化后果。然而,现有的大多数模型都忽略了外部生物物理驱动因素可能对模式信息和模式形成后的时空种群动态产生的影响。在这里,我们使用一个空间非局部逻辑模型(或称渔业-科尔莫哥罗夫方程),结合简单剪切和兰金涡流,研究了环境流对模式形成和种群动态的影响。我们发现,虽然种群丰度一般会随着流动强度的增加而降低,但流动对模式不稳定性的影响取决于流速场的空间结构。这一结果表明,流速场与模式形成的空间反馈以非对称的方式相互作用,导致了多种时空种群动力学机制,在这些机制中,总种群丰度既可以表现为具有特征频率的有规律振荡,也可以表现为没有明确周期的无规律动力学。更广泛地说,自组织反馈和环境流动之间的相互作用所导致的时空种群动态的多样性,突出了在研究双生态模式形成及其后果时将环境和生物物理过程结合起来的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1