Thomas Gawne, Hannah Bellenbaum, Luke B. Fletcher, Karen Appel, Carsten Baehtz, Victorien Bouffetier, Erik Brambrink, Danielle Brown, Attila Cangi, Adrien Descamps, Sebastian Goede, Nicholas J. Hartley, Marie-Luise Herbert, Philipp Hesselbach, Hauke Höppner, Oliver S. Humphries, Zuzana Konôpková, Alejandro Laso Garcia, Björn Lindqvist, Julian Lütgert, Michael J. MacDonald, Mikako Makita, Willow Martin, Mikhail Mishchenko, Zhandos A. Moldabekov, Motoaki Nakatsutsumi, Jean-Paul Naedler, Paul Neumayer, Alexander Pelka, Chongbing Qu, Lisa Randolph, Johannes Rips, Toma Toncian, Jan Vorberger, Lennart Wollenweber, Ulf Zastrau, Dominik Kraus, Thomas R. Preston, Tobias Dornheim
{"title":"Effects of mosaic crystal instrument functions on x-ray Thomson scattering diagnostics","authors":"Thomas Gawne, Hannah Bellenbaum, Luke B. Fletcher, Karen Appel, Carsten Baehtz, Victorien Bouffetier, Erik Brambrink, Danielle Brown, Attila Cangi, Adrien Descamps, Sebastian Goede, Nicholas J. Hartley, Marie-Luise Herbert, Philipp Hesselbach, Hauke Höppner, Oliver S. Humphries, Zuzana Konôpková, Alejandro Laso Garcia, Björn Lindqvist, Julian Lütgert, Michael J. MacDonald, Mikako Makita, Willow Martin, Mikhail Mishchenko, Zhandos A. Moldabekov, Motoaki Nakatsutsumi, Jean-Paul Naedler, Paul Neumayer, Alexander Pelka, Chongbing Qu, Lisa Randolph, Johannes Rips, Toma Toncian, Jan Vorberger, Lennart Wollenweber, Ulf Zastrau, Dominik Kraus, Thomas R. Preston, Tobias Dornheim","doi":"10.1063/5.0222072","DOIUrl":null,"url":null,"abstract":"Mosaic crystals, with their high integrated reflectivities, are widely employed in spectrometers used to diagnose high energy density systems. X-ray Thomson scattering (XRTS) has emerged as a powerful diagnostic tool of these systems, providing in principle direct access to important properties such as the temperature via detailed balance. However, the measured XRTS spectrum is broadened by the spectrometer instrument function (IF), and without careful consideration of the IF one risks misdiagnosing system conditions. Here, we consider in detail the IF of 40 and 100 μm mosaic Highly Annealed Pyrolytic Graphite crystals, and how the broadening varies across the spectrometer in an energy range of 6.7–8.6 keV. Notably, we find a strong asymmetry in the shape of the IF toward higher energies. As an example, we consider the effect of the asymmetry in the IF on the temperature inferred via XRTS for simulated 80 eV CH plasmas and find that the temperature can be overestimated if an approximate symmetric IF is used. We, therefore, expect a detailed consideration of the full IF will have an important impact on system properties inferred via XRTS in both forward modeling and model-free approaches.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mosaic crystals, with their high integrated reflectivities, are widely employed in spectrometers used to diagnose high energy density systems. X-ray Thomson scattering (XRTS) has emerged as a powerful diagnostic tool of these systems, providing in principle direct access to important properties such as the temperature via detailed balance. However, the measured XRTS spectrum is broadened by the spectrometer instrument function (IF), and without careful consideration of the IF one risks misdiagnosing system conditions. Here, we consider in detail the IF of 40 and 100 μm mosaic Highly Annealed Pyrolytic Graphite crystals, and how the broadening varies across the spectrometer in an energy range of 6.7–8.6 keV. Notably, we find a strong asymmetry in the shape of the IF toward higher energies. As an example, we consider the effect of the asymmetry in the IF on the temperature inferred via XRTS for simulated 80 eV CH plasmas and find that the temperature can be overestimated if an approximate symmetric IF is used. We, therefore, expect a detailed consideration of the full IF will have an important impact on system properties inferred via XRTS in both forward modeling and model-free approaches.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces