Modelling the age distribution of longevity leaders

Csaba Kiss, László Németh, Bálint Vető
{"title":"Modelling the age distribution of longevity leaders","authors":"Csaba Kiss, László Németh, Bálint Vető","doi":"arxiv-2409.03353","DOIUrl":null,"url":null,"abstract":"Human longevity leaders with remarkably long lifespan play a crucial role in\nthe advancement of longevity research. In this paper, we propose a stochastic\nmodel to describe the evolution of the age of the oldest person in the world by\na Markov process, in which we assume that the births of the individuals follow\na Poisson process with increasing intensity, lifespans of individuals are\nindependent and can be characterized by a gamma-Gompertz distribution with\ntime-dependent parameters. We utilize a dataset of the world's oldest person\ntitle holders since 1955, and we compute the maximum likelihood estimate for\nthe parameters iteratively by numerical integration. Based on our preliminary\nestimates, the model provides a good fit to the data and shows that the age of\nthe oldest person alive increases over time in the future. The estimated\nparameters enable us to describe the distribution of the age of the record\nholder process at a future time point.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human longevity leaders with remarkably long lifespan play a crucial role in the advancement of longevity research. In this paper, we propose a stochastic model to describe the evolution of the age of the oldest person in the world by a Markov process, in which we assume that the births of the individuals follow a Poisson process with increasing intensity, lifespans of individuals are independent and can be characterized by a gamma-Gompertz distribution with time-dependent parameters. We utilize a dataset of the world's oldest person title holders since 1955, and we compute the maximum likelihood estimate for the parameters iteratively by numerical integration. Based on our preliminary estimates, the model provides a good fit to the data and shows that the age of the oldest person alive increases over time in the future. The estimated parameters enable us to describe the distribution of the age of the record holder process at a future time point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长寿领袖的年龄分布模型
人类长寿领袖的超长寿命对长寿研究的发展起着至关重要的作用。本文提出了一个随机模型,用马尔可夫过程来描述世界上最长寿者年龄的演化过程,其中我们假设个体的出生遵循强度递增的泊松过程,个体的寿命是独立的,可以用伽马-贡佩兹分布来表征,其参数与时间有关。我们利用 1955 年以来世界最长寿者的数据集,通过数值积分迭代计算参数的最大似然估计值。根据我们的初步估计,该模型很好地拟合了数据,并表明未来最长寿者的年龄会随着时间的推移而增加。根据估计的参数,我们可以描述记录持有者年龄在未来某个时间点的分布情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1