Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments

Pierre Monmarché, Sebastian J. Schreiber, Édouard Strickler
{"title":"Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments","authors":"Pierre Monmarché, Sebastian J. Schreiber, Édouard Strickler","doi":"arxiv-2408.11179","DOIUrl":null,"url":null,"abstract":"We examine to what extent the tempo and mode of environmental fluctuations\nmatter for the growth of structured populations. The models are switching,\nlinear ordinary differential equations $x'(t)=A(\\sigma(\\omega t))x(t)$ where\n$x(t)=(x_1(t),\\dots,x_d(t))$ corresponds to the population densities in the $d$\nindividual states, $\\sigma(t)$ is a piece-wise constant function representing\nthe fluctuations in the environmental states $1,\\dots,N$, $\\omega$ is the\nfrequency of the environmental fluctuations, and $A(1),\\dots,A(n)$ are Metzler\nmatrices. $\\sigma(t)$ can either be a periodic function or correspond to a\ncontinuous-time Markov chain. Under suitable conditions, there is a Lyapunov\nexponent $\\Lambda(\\omega)$ such that $\\lim_{t\\to\\infty} \\frac{1}{t}\\log\\sum_i\nx_i(t)=\\Lambda(\\omega)$ for all non-negative, non-zero initial conditions\n$x(0)$ (with probability one in the random case). For both forms of switching,\nwe derive analytical first-order and second-order approximations of\n$\\Lambda(\\omega)$ in the limits of slow ($\\omega\\to 0$) and fast\n($\\omega\\to\\infty$) environmental fluctuations. When the order of switching and\nthe average switching times are equal, we show that the first-order\napproximations of $\\Lambda(\\omega)$ are equivalent in the slow-switching limit,\nbut not in the fast-switching limit. We illustrate our results with\napplications to stage-structured and spatially-structured models. When\ndispersal rates are symmetric, the first order approximations suggest that\npopulation growth rates increase with the frequency of switching -- consistent\nwith earlier work on periodic switching. In the absence of dispersal symmetry,\nwe demonstrate that $\\Lambda(\\omega)$ can be non-monotonic in $\\omega$. In\nconclusion, our results show how population growth rates depend on the tempo\n($\\omega$) and mode (random versus deterministic) of the environmental\nfluctuations.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine to what extent the tempo and mode of environmental fluctuations matter for the growth of structured populations. The models are switching, linear ordinary differential equations $x'(t)=A(\sigma(\omega t))x(t)$ where $x(t)=(x_1(t),\dots,x_d(t))$ corresponds to the population densities in the $d$ individual states, $\sigma(t)$ is a piece-wise constant function representing the fluctuations in the environmental states $1,\dots,N$, $\omega$ is the frequency of the environmental fluctuations, and $A(1),\dots,A(n)$ are Metzler matrices. $\sigma(t)$ can either be a periodic function or correspond to a continuous-time Markov chain. Under suitable conditions, there is a Lyapunov exponent $\Lambda(\omega)$ such that $\lim_{t\to\infty} \frac{1}{t}\log\sum_i x_i(t)=\Lambda(\omega)$ for all non-negative, non-zero initial conditions $x(0)$ (with probability one in the random case). For both forms of switching, we derive analytical first-order and second-order approximations of $\Lambda(\omega)$ in the limits of slow ($\omega\to 0$) and fast ($\omega\to\infty$) environmental fluctuations. When the order of switching and the average switching times are equal, we show that the first-order approximations of $\Lambda(\omega)$ are equivalent in the slow-switching limit, but not in the fast-switching limit. We illustrate our results with applications to stage-structured and spatially-structured models. When dispersal rates are symmetric, the first order approximations suggest that population growth rates increase with the frequency of switching -- consistent with earlier work on periodic switching. In the absence of dispersal symmetry, we demonstrate that $\Lambda(\omega)$ can be non-monotonic in $\omega$. In conclusion, our results show how population growth rates depend on the tempo ($\omega$) and mode (random versus deterministic) of the environmental fluctuations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境波动的速度和模式对人口增长的影响:周期性和随机环境下 Lyapunov 指数的慢极限和快极限近似值
我们研究了环境波动的节奏和模式对结构化种群增长的影响程度。模型是线性常微分方程$x'(t)=A(\sigma(\omega t))x(t)$ 其中$x(t)=(x_1(t),\dots,x_d(t))$ 对应于$d$个体状态下的种群密度、$sigma(t)$是一个片断常数函数,代表环境状态的波动,$1,\dots,N$, $\omega$是环境波动的频率,$A(1),\dots,A(n)$是Metzlermatrices。$\sigma(t)$既可以是周期函数,也可以对应于连续时间马尔可夫链。在合适的条件下,存在一个Lyapunovexponent $\Lambda(\omega)$ ,使得$\lim_{t\to\infty}.\对于所有非负、非零的初始条件$x(0)$(在随机情况下概率为一),都存在一个Lyapunovexponent $Lambda(\omega)$。对于这两种形式的切换,我们推导了在慢速($\omega\to 0$)和快速($\omega\to\infty$)环境波动极限下$Lambda(\omega)$的一阶和二阶分析近似值。当切换阶数和平均切换时间相等时,我们证明在慢切换极限中,$Lambda(\omega)$ 的一阶近似值是等价的,但在快切换极限中则不然。我们应用阶段结构模型和空间结构模型来说明我们的结果。当分散率对称时,一阶近似表明种群增长率随着切换频率的增加而增加--这与早期关于周期性切换的研究一致。在没有分散对称性的情况下,我们证明$\Lambda(\omega)$在$\omega$中可能是非单调的。总之,我们的结果显示了种群增长率如何取决于环境波动的节奏($\omega$)和模式(随机还是确定)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1