Jesse G. Callanan, Daniel T. Martinez, Sara Ricci, Nicholas K. Brewer, Benjamin K. Derby, Brandon J. Lovato, Kendall J. Hollis, Saryu J. Fensin, David R. Jones
{"title":"Dynamic and quasi-static strength of additively repaired aluminum","authors":"Jesse G. Callanan, Daniel T. Martinez, Sara Ricci, Nicholas K. Brewer, Benjamin K. Derby, Brandon J. Lovato, Kendall J. Hollis, Saryu J. Fensin, David R. Jones","doi":"10.1063/5.0222267","DOIUrl":null,"url":null,"abstract":"Additive manufacturing has the potential to repair high value components, saving significant time and resources; however, the level of reliability and performance of additive repairs is still relatively unknown. In this work, the structure–property and performance of laser wire additive manufacturing repairs in 1100 aluminum are investigated. Two types of intentional damage are inflicted on the samples and subsequently repaired with pulsed laser deposition additive manufacturing. Quasi-static (10−3s−1) and high strain-rate (10−3s−1) mechanical testing is carried out with in situ diagnostics and post-mortem imaging. The results show that while the quasi-static strength and ductility of samples with a repaired region are lower than a pristine sample, the dynamic strength under shock loading is comparable. This work highlights both the potential utility of additive manufacturing for repair purposes, the significant risk of compromised performance of additive parts under specific conditions, and the need to test at varying strain rates to fully characterize material performance.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222267","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing has the potential to repair high value components, saving significant time and resources; however, the level of reliability and performance of additive repairs is still relatively unknown. In this work, the structure–property and performance of laser wire additive manufacturing repairs in 1100 aluminum are investigated. Two types of intentional damage are inflicted on the samples and subsequently repaired with pulsed laser deposition additive manufacturing. Quasi-static (10−3s−1) and high strain-rate (10−3s−1) mechanical testing is carried out with in situ diagnostics and post-mortem imaging. The results show that while the quasi-static strength and ductility of samples with a repaired region are lower than a pristine sample, the dynamic strength under shock loading is comparable. This work highlights both the potential utility of additive manufacturing for repair purposes, the significant risk of compromised performance of additive parts under specific conditions, and the need to test at varying strain rates to fully characterize material performance.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces