H. Pezeshki, P. Li, R. Lavrijsen, M. Heck, B. Koopmans
{"title":"Integrated magneto-photonic non-volatile multi-bit memory","authors":"H. Pezeshki, P. Li, R. Lavrijsen, M. Heck, B. Koopmans","doi":"10.1063/5.0221825","DOIUrl":null,"url":null,"abstract":"We present an integrated magneto-photonic device for all-optical switching of non-volatile multi-bit spintronic memory. The bits are based on stand-alone magneto-tunnel junctions, which are perpendicularly magnetized with all-optically switchable free layers, coupled onto photonic crystal nanobeam cavities on an indium phosphide based platform. This device enables switching of the magnetization state of the bits by locally increasing the power absorption of light at resonance with the cavity. We design an add/drop network of cavities to grant random access to multiple bits via a wavelength-division multiplexing scheme. Based on a three-dimensional finite-difference time-domain method, we numerically illustrate a compact device capable of switching and accessing at least eight bits in different cavities with a 5 nm wavelength spacing in the conventional (C) telecommunication band. Our multi-bit device holds promise as a new paradigm for developing an ultrafast photonically addressable spintronic memory and may also empower novel opportunities for photonically driven spintronic-based neuromorphic computing.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0221825","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present an integrated magneto-photonic device for all-optical switching of non-volatile multi-bit spintronic memory. The bits are based on stand-alone magneto-tunnel junctions, which are perpendicularly magnetized with all-optically switchable free layers, coupled onto photonic crystal nanobeam cavities on an indium phosphide based platform. This device enables switching of the magnetization state of the bits by locally increasing the power absorption of light at resonance with the cavity. We design an add/drop network of cavities to grant random access to multiple bits via a wavelength-division multiplexing scheme. Based on a three-dimensional finite-difference time-domain method, we numerically illustrate a compact device capable of switching and accessing at least eight bits in different cavities with a 5 nm wavelength spacing in the conventional (C) telecommunication band. Our multi-bit device holds promise as a new paradigm for developing an ultrafast photonically addressable spintronic memory and may also empower novel opportunities for photonically driven spintronic-based neuromorphic computing.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces