Effect of heat and mass transfer on the MHD \(\mathrm{Al_2O_3/H_2O}\) and \(\mathrm{Al_2O_3/C_2H_6O_2}\) nanoliquid through an asymmetric vertical channel
{"title":"Effect of heat and mass transfer on the MHD \\(\\mathrm{Al_2O_3/H_2O}\\) and \\(\\mathrm{Al_2O_3/C_2H_6O_2}\\) nanoliquid through an asymmetric vertical channel","authors":"P Praveen Kumar, S Balakrishnan, A Magesh","doi":"10.1007/s12043-024-02814-2","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of magnetic field on the peristaltic motion of alumina/water (<span>\\(\\mathrm Al_2O_3/H_2O)\\)</span> and alumina/ethylene glycol (<span>\\(\\mathrm Al_2O_3/C_2H_6O_2)\\)</span> nanofluids in a vertical asymmetrical channel with mass/heat transfer was examined in this study. Unsteady governing equations were derived for the present problem. The Galilean transformation was used to transform the unsteady governing equations into steady ones. Reducing partial differential equations yields ordinary differential equations with the implementation of the long wavelength and low Reynolds number approximations. Coupled nonlinear differential equations (concentration and temperature equations) were solved analytically using the perturbation technique. In a similar fashion, the exact solution to the stream function is computed. MATLAB software was used to plot temperature, pressure rise, velocity and concentration, while MATHEMATICA software was used for generating streamlines. The findings suggest that, in comparison to the <span>\\(\\mathrm Al_2O_3/H_2O\\)</span> nanoliquid, the velocity profile for the <span>\\(\\mathrm Al_2O_3/C_2H_6O_2\\)</span> nanoliquid shows significantly larger magnitudes.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02814-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of magnetic field on the peristaltic motion of alumina/water (\(\mathrm Al_2O_3/H_2O)\) and alumina/ethylene glycol (\(\mathrm Al_2O_3/C_2H_6O_2)\) nanofluids in a vertical asymmetrical channel with mass/heat transfer was examined in this study. Unsteady governing equations were derived for the present problem. The Galilean transformation was used to transform the unsteady governing equations into steady ones. Reducing partial differential equations yields ordinary differential equations with the implementation of the long wavelength and low Reynolds number approximations. Coupled nonlinear differential equations (concentration and temperature equations) were solved analytically using the perturbation technique. In a similar fashion, the exact solution to the stream function is computed. MATLAB software was used to plot temperature, pressure rise, velocity and concentration, while MATHEMATICA software was used for generating streamlines. The findings suggest that, in comparison to the \(\mathrm Al_2O_3/H_2O\) nanoliquid, the velocity profile for the \(\mathrm Al_2O_3/C_2H_6O_2\) nanoliquid shows significantly larger magnitudes.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.