{"title":"Anomalous photo-thermoelectric effects of platinum and tungsten trioxide bilayers","authors":"Takeru Ito, Chihiro Hanioka, Hiroshi Irie","doi":"10.1063/5.0220952","DOIUrl":null,"url":null,"abstract":"We attempted to deposit a platinum (Pt) layer onto a tungsten trioxide (WO3) thin film (Pt/WO3). The Pt layer deposited on WO3 was oxidized by calcining Pt/WO3 in air to form PtOx/WO3. An n-type anomalous photo-thermoelectric (photo-TE) effect was confirmed for Pt/WO3 and Pt/HyWO3−x. HyWO3−x is a protonated WO3 after the gaschromic (GC) reaction of WO3 in Pt/WO3. The anomalous photo-TE effect was that both the electrical conductivity (σphoto) and the absolute value of the Seebeck coefficient (Sphoto) increased under UV light or visible light irradiation. After stopping the irradiation, σphoto and Sphoto decreased. In contrast, an n-type normal photo-TE effect was observed for PtOx/HyWO3−x after the GC reaction of PtOx/WO3, in which σphoto increased and the absolute value of Sphoto decreased under ultraviolet (UV) light irradiation, and vice versa after stopping the irradiation. These findings indicate that Pt was responsible for the anomalous photo-TE effect due to the electron accumulation capability of Pt, to which electrons were transferred from the conduction band of HyWO3−x. In contrast, electrons could not energetically transfer from HyWO3−x to PtO2, which existed in PtOx particles at the surface. Therefore, PtOx/HyWO3−x behaved similar to sole HyWO3−x, indicating the normal photo-TE effect.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0220952","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We attempted to deposit a platinum (Pt) layer onto a tungsten trioxide (WO3) thin film (Pt/WO3). The Pt layer deposited on WO3 was oxidized by calcining Pt/WO3 in air to form PtOx/WO3. An n-type anomalous photo-thermoelectric (photo-TE) effect was confirmed for Pt/WO3 and Pt/HyWO3−x. HyWO3−x is a protonated WO3 after the gaschromic (GC) reaction of WO3 in Pt/WO3. The anomalous photo-TE effect was that both the electrical conductivity (σphoto) and the absolute value of the Seebeck coefficient (Sphoto) increased under UV light or visible light irradiation. After stopping the irradiation, σphoto and Sphoto decreased. In contrast, an n-type normal photo-TE effect was observed for PtOx/HyWO3−x after the GC reaction of PtOx/WO3, in which σphoto increased and the absolute value of Sphoto decreased under ultraviolet (UV) light irradiation, and vice versa after stopping the irradiation. These findings indicate that Pt was responsible for the anomalous photo-TE effect due to the electron accumulation capability of Pt, to which electrons were transferred from the conduction band of HyWO3−x. In contrast, electrons could not energetically transfer from HyWO3−x to PtO2, which existed in PtOx particles at the surface. Therefore, PtOx/HyWO3−x behaved similar to sole HyWO3−x, indicating the normal photo-TE effect.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces