Polycycloalkanes at the Helm: Exploring high energy density eFuel with norbornyl derivatives

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-09-06 DOI:10.1016/j.mtchem.2024.102264
Feng Wang, Delano P. Chong
{"title":"Polycycloalkanes at the Helm: Exploring high energy density eFuel with norbornyl derivatives","authors":"Feng Wang, Delano P. Chong","doi":"10.1016/j.mtchem.2024.102264","DOIUrl":null,"url":null,"abstract":"Sustainable aviation fuel (SAF, eFuel), predominantly composed of polycyclo-hydrocarbons, is a promising alternative to conventional fossil jet fuels. It offers cleaner options for achieving immediate carbon neutrality. This study focuses on norbornyl derivatives containing seven carbon atoms (CH), including norbornadiene (NBD), quadricyclane (QC), norbornene (NBN), [2.2.1]propellane (PPL), and norbornane (NBA). These compounds are components of high energy density (HED) fuels or precursor molecules. Understanding their chemical electronic structures reveals how energy is stored in HED compounds. The carbon nuclear magnetic resonance (C NMR) chemical shifts and C1s core electron binding energy (CEBE) properties were calculated using density functional theory (DFT). The results suggest that saturated C–C single σ-bonds and strained polycycloalkane structures are the primary energy storage mechanisms for these hydrocarbons. This study provides valuable theoretical insights for the development of sustainable HED aviation fuel (eFuel).","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"18 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable aviation fuel (SAF, eFuel), predominantly composed of polycyclo-hydrocarbons, is a promising alternative to conventional fossil jet fuels. It offers cleaner options for achieving immediate carbon neutrality. This study focuses on norbornyl derivatives containing seven carbon atoms (CH), including norbornadiene (NBD), quadricyclane (QC), norbornene (NBN), [2.2.1]propellane (PPL), and norbornane (NBA). These compounds are components of high energy density (HED) fuels or precursor molecules. Understanding their chemical electronic structures reveals how energy is stored in HED compounds. The carbon nuclear magnetic resonance (C NMR) chemical shifts and C1s core electron binding energy (CEBE) properties were calculated using density functional theory (DFT). The results suggest that saturated C–C single σ-bonds and strained polycycloalkane structures are the primary energy storage mechanisms for these hydrocarbons. This study provides valuable theoretical insights for the development of sustainable HED aviation fuel (eFuel).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多环烷掌舵:利用降冰片烷基衍生物探索高能量密度电子燃料
可持续航空燃料(SAF,eFuel)主要由多环碳氢化合物组成,是一种替代传统化石喷气燃料的前景广阔的燃料。它为立即实现碳中和提供了更清洁的选择。本研究的重点是含有七个碳原子 (CH) 的降冰片烷基衍生物,包括降冰片二烯 (NBD)、四环烷 (QC)、降冰片烯 (NBN)、[2.2.1]丙烷 (PPL) 和降冰片烷 (NBA)。这些化合物是高能量密度(HED)燃料或前体分子的成分。了解它们的化学电子结构可以揭示能量是如何储存在高能量密度(HED)化合物中的。利用密度泛函理论(DFT)计算了碳核磁共振(C NMR)化学位移和 C1s 核心电子结合能(CEBE)特性。结果表明,饱和 C-C 单σ键和应变多环烷结构是这些碳氢化合物的主要储能机制。这项研究为开发可持续的 HED 航空燃料(eFuel)提供了宝贵的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1