{"title":"Efficient glycolysis of used PET bottles into a high-quality valuable monomer using a shape-engineered MnOx nanocatalyst†","authors":"Bhattu Swapna , Nittan Singh , Suranjana Patowary , Pankaj Bharali , Giridhar Madras , Putla Sudarsanam","doi":"10.1039/d4cy00823e","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical recycling of used polyethylene terephthalate (PET) bottles, a widely used plastic in the modern world, to obtain valuable monomers offers a promising solution to address post-consumer plastic-related environmental concerns. In this study, we have developed an efficient heterogeneous catalytic approach using a shape-engineered manganese oxide (MnO<sub>x</sub>) nanocatalyst with a well-defined rod morphology to facilitate the glycolysis of PET with biomass-derived ethylene glycol to produce a high-quality bis(2-hydroxyethyl) terephthalate (BHET) valuable monomer under mild conditions. The nanorod morphology of the MnO<sub>x</sub> material, specifically the MnO<sub>x</sub> calcined at 500 °C (MnO<sub>x</sub>-500), exhibited remarkable catalytic efficiency in converting used PET bottles into BHET. At a temperature of 180 °C for 3 h, the MnO<sub>x</sub>-500 nanocatalyst achieved a complete conversion of PET with a 86% isolated yield of BHET, surpassing the performance of various metal oxides, such as CeO<sub>2</sub>, TiO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>. Qualitative analysis of the isolated BHET monomer crystals was conducted using NMR, FT-IR, HR-MS, and powder XRD, along with assessments of thermal stability through TGA and DSC studies. Furthermore, the study demonstrated the catalyst's stability and reusability, suggesting the practical application potential of this methodology. The structure–activity correlation, revealed through comprehensive characterization of the nanostructured MnO<sub>x</sub> materials, highlighted the crucial role of the oxygen vacancy defects and the acidic properties in the MnO<sub>x</sub>-500 nanocatalyst for efficient PET glycolysis to obtain the desired BHET monomer.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324004702","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical recycling of used polyethylene terephthalate (PET) bottles, a widely used plastic in the modern world, to obtain valuable monomers offers a promising solution to address post-consumer plastic-related environmental concerns. In this study, we have developed an efficient heterogeneous catalytic approach using a shape-engineered manganese oxide (MnOx) nanocatalyst with a well-defined rod morphology to facilitate the glycolysis of PET with biomass-derived ethylene glycol to produce a high-quality bis(2-hydroxyethyl) terephthalate (BHET) valuable monomer under mild conditions. The nanorod morphology of the MnOx material, specifically the MnOx calcined at 500 °C (MnOx-500), exhibited remarkable catalytic efficiency in converting used PET bottles into BHET. At a temperature of 180 °C for 3 h, the MnOx-500 nanocatalyst achieved a complete conversion of PET with a 86% isolated yield of BHET, surpassing the performance of various metal oxides, such as CeO2, TiO2, and Nb2O5. Qualitative analysis of the isolated BHET monomer crystals was conducted using NMR, FT-IR, HR-MS, and powder XRD, along with assessments of thermal stability through TGA and DSC studies. Furthermore, the study demonstrated the catalyst's stability and reusability, suggesting the practical application potential of this methodology. The structure–activity correlation, revealed through comprehensive characterization of the nanostructured MnOx materials, highlighted the crucial role of the oxygen vacancy defects and the acidic properties in the MnOx-500 nanocatalyst for efficient PET glycolysis to obtain the desired BHET monomer.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.