Carbon-supported Zn-HPW ligand catalysts for acetylene hydration†

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-30 DOI:10.1039/d4cy00806e
Zhen Chen , Dingjie Luo , Qinqin Wang , Long Zhou , Yufan Ma , Fangjie Lu , Bin Dai
{"title":"Carbon-supported Zn-HPW ligand catalysts for acetylene hydration†","authors":"Zhen Chen ,&nbsp;Dingjie Luo ,&nbsp;Qinqin Wang ,&nbsp;Long Zhou ,&nbsp;Yufan Ma ,&nbsp;Fangjie Lu ,&nbsp;Bin Dai","doi":"10.1039/d4cy00806e","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the production of acetaldehyde with rich raw materials still has high research value. A series of Zn-HPW/AC catalysts with a Zn–O<sub>4</sub> configuration were prepared to solve the problems of easy loss of active components and carbon accumulation of Zn-based catalysts in the reaction. The characterization results showed that the phosphotungstic acid (HPW) ligands effectively promoted Zn species dispersion, provided more acid sites, mitigated the loss of Zn, and improved the carbon deposition resistance of the catalyst. The density functional theory (DFT) calculation further confirmed that the water molecules preferentially adsorb on the surface of the catalyst to promote the dissociation of water molecules, and the H of dissociation from water molecules and Zn forms the most stable Zn–OH configuration, which is the main active center of the reaction. Meanwhile the –OH dissociated from water molecules is adducted with C<sub>2</sub>H<sub>2</sub>, while H reduces the catalyst, and the original H atoms in the ligand catalyst further participate in the reaction to realize the catalytic cycle. This provides a new idea for the development of green catalysts for acetylene hydration.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324004684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the production of acetaldehyde with rich raw materials still has high research value. A series of Zn-HPW/AC catalysts with a Zn–O4 configuration were prepared to solve the problems of easy loss of active components and carbon accumulation of Zn-based catalysts in the reaction. The characterization results showed that the phosphotungstic acid (HPW) ligands effectively promoted Zn species dispersion, provided more acid sites, mitigated the loss of Zn, and improved the carbon deposition resistance of the catalyst. The density functional theory (DFT) calculation further confirmed that the water molecules preferentially adsorb on the surface of the catalyst to promote the dissociation of water molecules, and the H of dissociation from water molecules and Zn forms the most stable Zn–OH configuration, which is the main active center of the reaction. Meanwhile the –OH dissociated from water molecules is adducted with C2H2, while H reduces the catalyst, and the original H atoms in the ligand catalyst further participate in the reaction to realize the catalytic cycle. This provides a new idea for the development of green catalysts for acetylene hydration.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳支撑的 Zn-HPW 配体乙炔水合催化剂
近年来,利用丰富的原料生产乙醛仍具有很高的研究价值。为了解决锌基催化剂在反应过程中活性组分易流失和积碳的问题,研究人员制备了一系列 Zn-O4 构型的 Zn-HPW/AC 催化剂。表征结果表明,磷钨酸(HPW)配体有效地促进了 Zn 物种的分散,提供了更多的酸性位点,减轻了 Zn 的损失,提高了催化剂的抗积碳性能。密度泛函理论(DFT)计算进一步证实,水分子优先吸附在催化剂表面,促进水分子离解,水分子与 Zn 离解的 H 形成最稳定的 Zn-OH 构型,是反应的主要活性中心。同时,水分子离解出的 -OH 与 C2H2 加成,H 还原催化剂,配体催化剂中原有的 H 原子进一步参与反应,实现催化循环。这为乙炔水合绿色催化剂的开发提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1