Yanyan Wang, Yaran Zhang, Rong Li, Ben Qian, Xin Du, Xuyun Qiu, Mengmeng Chen, Guohui Shi, Jiangchun Wei, Xin-Li Wei, Qi Wu
{"title":"Exploration on cold adaptation of Antarctic lichen via detection of positive selection genes","authors":"Yanyan Wang, Yaran Zhang, Rong Li, Ben Qian, Xin Du, Xuyun Qiu, Mengmeng Chen, Guohui Shi, Jiangchun Wei, Xin-Li Wei, Qi Wu","doi":"10.1186/s43008-024-00160-x","DOIUrl":null,"url":null,"abstract":"Lichen as mutualistic symbiosis is the dominant organism in various extreme terrestrial environment on Earth, however, the mechanisms of their adaptation to extreme habitats have not been fully elucidated. In this study, we chose the Antarctic dominant lichen species Usnea aurantiacoatra to generate a high-quality genome, carried out phylogenetic analysis using maximum likelihood and identify genes under positive selection. We performed functional enrichment analysis on the positively selected genes (PSGs) and found that most of the PSGs focused on transmembrane transporter activity and vacuole components. This suggest that the genes related to energy storage and transport in Antarctic U. aurantiacoatra were affected by environmental pressure. Inside of the 86 PSGs screened, two protein interaction networks were identified, which were RNA helicase related proteins and regulator of G-protein signaling related proteins. The regulator of the G-protein signaling gene (UaRGS1) was chosen to perform further verification by the lichen genetic manipulation system Umbilicaria muhlenbergii. Given that the absence of UmRgs1 resulted in elevated lethality to cold shock, the role for UaRgs1 in Antarctic U. aurantiacoatra resistance to cold can be inferred. The investigation of lichen adaptation to extreme environments at the molecular level will be opened up.","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"527 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s43008-024-00160-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lichen as mutualistic symbiosis is the dominant organism in various extreme terrestrial environment on Earth, however, the mechanisms of their adaptation to extreme habitats have not been fully elucidated. In this study, we chose the Antarctic dominant lichen species Usnea aurantiacoatra to generate a high-quality genome, carried out phylogenetic analysis using maximum likelihood and identify genes under positive selection. We performed functional enrichment analysis on the positively selected genes (PSGs) and found that most of the PSGs focused on transmembrane transporter activity and vacuole components. This suggest that the genes related to energy storage and transport in Antarctic U. aurantiacoatra were affected by environmental pressure. Inside of the 86 PSGs screened, two protein interaction networks were identified, which were RNA helicase related proteins and regulator of G-protein signaling related proteins. The regulator of the G-protein signaling gene (UaRGS1) was chosen to perform further verification by the lichen genetic manipulation system Umbilicaria muhlenbergii. Given that the absence of UmRgs1 resulted in elevated lethality to cold shock, the role for UaRgs1 in Antarctic U. aurantiacoatra resistance to cold can be inferred. The investigation of lichen adaptation to extreme environments at the molecular level will be opened up.
Ima FungusAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍:
The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue