{"title":"Engineering Escherichia coli for utilization of PET degraded ethylene glycol as sole feedstock","authors":"Junxi Chi, Pengju Wang, Yidan Ma, Xingmiao Zhu, Leilei Zhu, Ming Chen, Changhao Bi, Xueli Zhang","doi":"10.1186/s13068-024-02568-4","DOIUrl":null,"url":null,"abstract":"<div><p>From both economic and environmental perspectives, ethylene glycol, the principal constituent in the degradation of PET, emerges as an optimal feedstock for microbial cell factories. Traditional methods for constructing <i>Escherichia coli</i> chassis cells capable of utilizing ethylene glycol as a non-sugar feedstock typically involve overexpressing the genes <i>fucO</i> and <i>aldA</i>. However, these approaches have not succeeded in enabling the exclusive use of ethylene glycol as the sole source of carbon and energy for growth. Through ultraviolet radiation-induced mutagenesis and subsequent laboratory adaptive evolution, an EG02 strain emerged from <i>E. coli</i> MG1655 capable of utilizing ethylene glycol as its sole carbon and energy source, demonstrating an uptake rate of 8.1 ± 1.3 mmol/gDW h. Comparative transcriptome analysis guided reverse metabolic engineering, successfully enabling four wild-type <i>E. coli</i> strains to metabolize ethylene glycol exclusively. This was achieved through overexpression of the <i>gcl</i>, <i>hyi</i>, <i>glxR</i>, and <i>glxK</i> genes. Notably, the engineered <i>E. coli</i> chassis cells efficiently metabolized the 87 mM ethylene glycol found in PET enzymatic degradation products following 72 h of fermentation. This work presents a practical solution for recycling ethylene glycol from PET waste degradation products, demonstrating that simply adding M9 salts can effectively convert them into viable raw materials for <i>E. coli</i> cell factories. Our findings also emphasize the significant roles of genes associated with the glycolate and glyoxylate degradation I pathway in the metabolic utilization of ethylene glycol, an aspect frequently overlooked in previous research.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02568-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02568-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
From both economic and environmental perspectives, ethylene glycol, the principal constituent in the degradation of PET, emerges as an optimal feedstock for microbial cell factories. Traditional methods for constructing Escherichia coli chassis cells capable of utilizing ethylene glycol as a non-sugar feedstock typically involve overexpressing the genes fucO and aldA. However, these approaches have not succeeded in enabling the exclusive use of ethylene glycol as the sole source of carbon and energy for growth. Through ultraviolet radiation-induced mutagenesis and subsequent laboratory adaptive evolution, an EG02 strain emerged from E. coli MG1655 capable of utilizing ethylene glycol as its sole carbon and energy source, demonstrating an uptake rate of 8.1 ± 1.3 mmol/gDW h. Comparative transcriptome analysis guided reverse metabolic engineering, successfully enabling four wild-type E. coli strains to metabolize ethylene glycol exclusively. This was achieved through overexpression of the gcl, hyi, glxR, and glxK genes. Notably, the engineered E. coli chassis cells efficiently metabolized the 87 mM ethylene glycol found in PET enzymatic degradation products following 72 h of fermentation. This work presents a practical solution for recycling ethylene glycol from PET waste degradation products, demonstrating that simply adding M9 salts can effectively convert them into viable raw materials for E. coli cell factories. Our findings also emphasize the significant roles of genes associated with the glycolate and glyoxylate degradation I pathway in the metabolic utilization of ethylene glycol, an aspect frequently overlooked in previous research.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis