Forecasting the yield curve: the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macro‐economic factors

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-09 DOI:10.1111/jtsa.12769
João F. Caldeira, Werley C. Cordeiro, Esther Ruiz, André A.P. Santos
{"title":"Forecasting the yield curve: the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macro‐economic factors","authors":"João F. Caldeira, Werley C. Cordeiro, Esther Ruiz, André A.P. Santos","doi":"10.1111/jtsa.12769","DOIUrl":null,"url":null,"abstract":"In this article, we analyse the forecasting performance of several parametric extensions of the popular Dynamic Nelson–Siegel (DNS) model for the yield curve. Our focus is on the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macroeconomic variables. We also consider the role of several popular restrictions on the dynamics of the factors. Using a novel dataset of end‐of‐month continuously compounded Treasury yields on US zero‐coupon bonds and frequentist estimation based on the extended Kalman filter, we show that a second decay parameter does not contribute to better forecasts. In concordance with the preferred habitat theory, we also show that the best forecasting model depends on the maturity. For short maturities, the best performance is obtained in a heteroscedastic model with a time‐varying decay parameter. However, for long maturities, neither the time‐varying decay nor the heteroscedasticity plays any role, and the best forecasts are obtained in the basic DNS model with the shape of the yield curve depending on macroeconomic activity. Finally, we find that assuming non‐stationary factors is helpful in forecasting at long horizons.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we analyse the forecasting performance of several parametric extensions of the popular Dynamic Nelson–Siegel (DNS) model for the yield curve. Our focus is on the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macroeconomic variables. We also consider the role of several popular restrictions on the dynamics of the factors. Using a novel dataset of end‐of‐month continuously compounded Treasury yields on US zero‐coupon bonds and frequentist estimation based on the extended Kalman filter, we show that a second decay parameter does not contribute to better forecasts. In concordance with the preferred habitat theory, we also show that the best forecasting model depends on the maturity. For short maturities, the best performance is obtained in a heteroscedastic model with a time‐varying decay parameter. However, for long maturities, neither the time‐varying decay nor the heteroscedasticity plays any role, and the best forecasts are obtained in the basic DNS model with the shape of the yield curve depending on macroeconomic activity. Finally, we find that assuming non‐stationary factors is helpful in forecasting at long horizons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测收益率曲线:附加和时变衰减参数、条件异方差和宏观经济因素的作用
在本文中,我们分析了针对收益率曲线的流行动态尼尔森-西格尔(Dynamic Nelson-Siegel,DNS)模型的几种参数扩展的预测性能。我们的重点是附加和时变衰减参数、条件异方差和宏观经济变量的作用。我们还考虑了几种流行的因素动态限制的作用。利用美国零息债券月末连续复利国债收益率的新数据集和基于扩展卡尔曼滤波器的频繁估计,我们表明第二个衰减参数无助于获得更好的预测。与首选栖息地理论一致,我们还表明最佳预测模型取决于期限。就短期而言,具有时变衰减参数的异方差模型的性能最佳。然而,对于长期限而言,时变衰减和异方差都不起任何作用,最佳预测是在收益率曲线形状取决于宏观经济活动的 DNS 基本模型中获得的。最后,我们发现假设非稳态因素有助于进行长期预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1