Bound state basics

Paul Hoyer
{"title":"Bound state basics","authors":"Paul Hoyer","doi":"arxiv-2409.05660","DOIUrl":null,"url":null,"abstract":"Perturbative expansions for atoms in QED are developed around interacting\nstates, typically defined by the Schr\\\"odinger equation. Calculations are\nnevertheless done using the standard Feynman diagram expansion around free\nstates. The classical $-\\alpha/r$ potential is then obtained through an\ninfinite sum of ladder diagrams. The complexity of this approach may have\ncontributed to bound states being omitted from QFT textbooks, restricting the\nfield to select experts. The confinement scale 1 fm of QCD must be introduced without changing the\nLagrangian. This can be done via a boundary condition on the gauge field, which\naffects the bound state potential. The absence of confinement in Feynman\ndiagrams may be due to the free field boundary condition. Poincar\\'e invariance is realized dynamically for bound states, i.e., the\ninteractions are frame dependent. Gauge theories have instantaneous\ninteractions, due to gauge fixing at all points of space at the same time. In\nbound state perturbation theory each order must have exact Poincar\\'e\ninvariance. This is non-trivial even for atoms at lowest order. I summarize a perturbative approach to equal time bound states in QED and\nQCD, using a Fock expansion in temporal ($A^0=0$) gauge. The longitudinal\nelectric field $E_L$ is instantaneous and need not vanish at spatial infinity\nfor the constituents of color singlet states in QCD. Poincar\\'e covariance\ndetermines the boundary condition for $E_L$ up to a universal scale,\ncharacterised by the gluon field energy density of the vacuum. A non-vanishing\ndensity contributes a linear term to the $q\\bar{q}$ potential, while $qqq,\\\nq\\bar{q}g$ and $gg$ color singlet states get analogous confining potentials.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perturbative expansions for atoms in QED are developed around interacting states, typically defined by the Schr\"odinger equation. Calculations are nevertheless done using the standard Feynman diagram expansion around free states. The classical $-\alpha/r$ potential is then obtained through an infinite sum of ladder diagrams. The complexity of this approach may have contributed to bound states being omitted from QFT textbooks, restricting the field to select experts. The confinement scale 1 fm of QCD must be introduced without changing the Lagrangian. This can be done via a boundary condition on the gauge field, which affects the bound state potential. The absence of confinement in Feynman diagrams may be due to the free field boundary condition. Poincar\'e invariance is realized dynamically for bound states, i.e., the interactions are frame dependent. Gauge theories have instantaneous interactions, due to gauge fixing at all points of space at the same time. In bound state perturbation theory each order must have exact Poincar\'e invariance. This is non-trivial even for atoms at lowest order. I summarize a perturbative approach to equal time bound states in QED and QCD, using a Fock expansion in temporal ($A^0=0$) gauge. The longitudinal electric field $E_L$ is instantaneous and need not vanish at spatial infinity for the constituents of color singlet states in QCD. Poincar\'e covariance determines the boundary condition for $E_L$ up to a universal scale, characterised by the gluon field energy density of the vacuum. A non-vanishing density contributes a linear term to the $q\bar{q}$ potential, while $qqq,\ q\bar{q}g$ and $gg$ color singlet states get analogous confining potentials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绑定状态基础知识
原子在 QED 中的惯性展开是围绕相互作用态展开的,通常由 Schr\"odinger 方程定义。尽管如此,计算仍使用围绕自由态的标准费曼图展开。经典的 $-\alpha/r$ 势是通过梯形图的无限和得到的。这种方法的复杂性可能导致束缚态在 QFT 教科书中被省略,使这一领域仅限于部分专家。必须在不改变拉格朗日的情况下引入 QCD 的约束尺度 1 fm。这可以通过影响束缚态势的轨距场边界条件来实现。自由场边界条件可能会导致费曼迪格图中没有约束。对于束缚态,Poincar\'e 不变性是动态实现的,也就是说,相互作用与框架有关。量规理论具有瞬时相互作用,这是由于量规同时固定在空间的所有点上。入射态扰动理论的每个阶都必须具有精确的Poincar/'einvariance。即使对于最低阶的原子来说,这也是非难的。我总结了 QED 和 QCD 中等时间束缚态的扰动方法,使用的是时间($A^0=0$)规的福克展开。纵向电场$E_L$是瞬时的,对于QCD中彩色单子态的成分来说,它不需要在空间无穷大时消失。Poincar\'e协变决定了E_L$的边界条件,它达到了一个普遍尺度,以真空的胶子场能量密度为特征。非万向密度为$q\bar{q}$势贡献了一个线性项,而$qqq, \qq\bar{q}g$和$gg$彩色单子态则得到了类似的约束势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quark saturation in the QCD phase diagram Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei Optimization of Nuclear Mass Models Using Algorithms and Neural Networks Far-from-equilibrium attractors with Full Relativistic Boltzmann approach in 3+1 D: moments of distribution function and anisotropic flows $v_n$ Photo-nuclear reaction rates of $^{157,159}$Ho and $^{163,165}$Tm and their impact in the $γ$--process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1