Linear graphlet models for accurate and interpretable cheminformatics†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-08-16 DOI:10.1039/D4DD00089G
Michael Tynes, Michael G. Taylor, Jan Janssen, Daniel J. Burrill, Danny Perez, Ping Yang and Nicholas Lubbers
{"title":"Linear graphlet models for accurate and interpretable cheminformatics†","authors":"Michael Tynes, Michael G. Taylor, Jan Janssen, Daniel J. Burrill, Danny Perez, Ping Yang and Nicholas Lubbers","doi":"10.1039/D4DD00089G","DOIUrl":null,"url":null,"abstract":"<p >Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 1980-1996"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00089g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00089g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性小图模型用于准确和可解释的化学信息学
机器学习的进步催生了多种数据驱动型方法,用于根据分子结构预测化学性质。几十年来,化学信息学领域在很大程度上依赖于结构指纹识别,而近年来的重点则转向利用高度参数化的深度神经网络,这种网络通常能最大限度地提高准确性。除了准确性之外,机器学习技术要想在科学应用中发挥作用并值得信赖,通常还需要对模型预测和不确定性量化技术进行直观解释,这样从业人员才能知道什么时候适合将模型应用于新数据。在这里,我们重新审视了小图直方图指纹,并引入了几个新元素。我们的研究表明,基于小图指纹建立的线性模型在精度上可以与目前的技术水平相媲美,同时在可解释性上也比黑盒子方法更具优势。我们展示了如何利用分子小图之间的关系对预测做出精确解释,并证明这些解释与化学直觉、实验测量和理论计算相一致。最后,我们展示了如何利用新分子中未见片段的存在来调整预测和量化不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1