{"title":"Optimizing Plant Biofactories: Enhancing Recombinant Protein Production in Nicotiana benthamiana through Phytoplasma Effectors","authors":"Md Saifur Rahman","doi":"10.1101/2024.08.29.610350","DOIUrl":null,"url":null,"abstract":"Molecular farming, which utilizes plants as biofactories for recombinant protein production, offers an innovative and cost-effective alternative to traditional expression systems. Despite its advantages, plant-based production faces challenges such as low transgene expression and protein instability. Recent studies have highlighted the potential of Nicotiana benthamiana axillary stem leaves to enhance protein yield. This study explored the development of N. benthamiana lines expressing TENGU without signal peptide (T-SP), a Phytoplasma effector known to induce plant dwarfism and increase shoot growth. TENGU and other effectors, such as SAP05 and SAP11, were introduced to create phenotypic variations that favor recombinant protein production. This study aimed to optimize these transgenic lines for increased biomass and protein yields by leveraging vertical farming conditions for scalable production. The results demonstrated significant improvements in leaf number, biomass, and five times more soluble protein content in T-SP lines compared to control lines, suggesting a promising approach for efficient molecular farming.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.610350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular farming, which utilizes plants as biofactories for recombinant protein production, offers an innovative and cost-effective alternative to traditional expression systems. Despite its advantages, plant-based production faces challenges such as low transgene expression and protein instability. Recent studies have highlighted the potential of Nicotiana benthamiana axillary stem leaves to enhance protein yield. This study explored the development of N. benthamiana lines expressing TENGU without signal peptide (T-SP), a Phytoplasma effector known to induce plant dwarfism and increase shoot growth. TENGU and other effectors, such as SAP05 and SAP11, were introduced to create phenotypic variations that favor recombinant protein production. This study aimed to optimize these transgenic lines for increased biomass and protein yields by leveraging vertical farming conditions for scalable production. The results demonstrated significant improvements in leaf number, biomass, and five times more soluble protein content in T-SP lines compared to control lines, suggesting a promising approach for efficient molecular farming.