Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales

Armin M. Zand, Stanislav Anastassov, Timothy Frei, Mustafa Khammash
{"title":"Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales","authors":"Armin M. Zand, Stanislav Anastassov, Timothy Frei, Mustafa Khammash","doi":"10.1101/2024.08.22.609155","DOIUrl":null,"url":null,"abstract":"Integral feedback control strategies have proven effective in regulating protein expression in unpredictable cellular environments. These strategies, grounded in model-based designs and control theory, have advanced synthetic biology applications. Autocatalytic integral feedback controllers, utilizing positive autoregulation for integral action, are particularly promising due to their similarity to natural behaviors like self-replication and positive feedback seen across biological scales. However, their effectiveness is often hindered by resource competition and context-dependent couplings. This study addresses these challenges with a multi-layer feedback strategy, enabling population-level integral feedback and multicellular integrators. We provide a generalized mathematical framework for modeling resource competition in complex genetic networks, supporting the design of intracellular control circuits. Our controller motif demonstrated precise regulation in tasks ranging from gene expression control to population growth in multi-strain communities. We also explore a variant capable of ratiometric control, proving its effectiveness in managing gene ratios and co-culture compositions in engineered microbial ecosystems. These findings offer a versatile approach to achieving robust adaptation and homeostasis from subcellular to multicellular scales.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.22.609155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integral feedback control strategies have proven effective in regulating protein expression in unpredictable cellular environments. These strategies, grounded in model-based designs and control theory, have advanced synthetic biology applications. Autocatalytic integral feedback controllers, utilizing positive autoregulation for integral action, are particularly promising due to their similarity to natural behaviors like self-replication and positive feedback seen across biological scales. However, their effectiveness is often hindered by resource competition and context-dependent couplings. This study addresses these challenges with a multi-layer feedback strategy, enabling population-level integral feedback and multicellular integrators. We provide a generalized mathematical framework for modeling resource competition in complex genetic networks, supporting the design of intracellular control circuits. Our controller motif demonstrated precise regulation in tasks ranging from gene expression control to population growth in multi-strain communities. We also explore a variant capable of ratiometric control, proving its effectiveness in managing gene ratios and co-culture compositions in engineered microbial ecosystems. These findings offer a versatile approach to achieving robust adaptation and homeostasis from subcellular to multicellular scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层自催化反馈可在资源竞争中实现跨尺度综合控制
在不可预测的细胞环境中,积分反馈控制策略已被证明能有效调节蛋白质的表达。这些基于模型设计和控制理论的策略推动了合成生物学的应用。自催化积分反馈控制器利用正向自调节实现积分作用,由于其与自我复制和正反馈等跨生物尺度的自然行为相似,因此特别具有发展前景。然而,它们的有效性往往受到资源竞争和上下文相关耦合的阻碍。本研究采用多层反馈策略来应对这些挑战,从而实现种群级积分反馈和多细胞积分器。我们为复杂遗传网络中的资源竞争建模提供了一个通用数学框架,支持细胞内控制电路的设计。在多菌株群落的基因表达控制和种群增长等任务中,我们的控制器图案表现出了精确的调控能力。我们还探索了一种能够进行比例控制的变体,证明了它在管理工程微生物生态系统中的基因比例和共培养成分方面的有效性。这些发现为实现从亚细胞到多细胞尺度的稳健适应和平衡提供了一种多功能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA-templated spatially controlled proteolysis targeting chimeras for CyclinD1-CDK4/6 complex protein degradation Cas9AEY (Cas9-facilitated Homologous Recombination Assembly of non-specific Escherichia coli yeast vector) method of constructing large-sized DNA. Metabolite-responsive Control of Transcription by Phase Separation-based Synthetic Organelles A modular system for programming multistep activation of endogenous genes in stem cells Mutual dependence between membrane phase separation and bacterial division protein dynamics in synthetic cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1