Performances of halide scintillators for the dosimetry based on gamma-ray spectrometry for environmental monitoring systems

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Engineering and Technology Pub Date : 2024-09-03 DOI:10.1016/j.net.2024.08.042
Wanook Ji, Eunjoong Lee, Young-Yong Ji
{"title":"Performances of halide scintillators for the dosimetry based on gamma-ray spectrometry for environmental monitoring systems","authors":"Wanook Ji, Eunjoong Lee, Young-Yong Ji","doi":"10.1016/j.net.2024.08.042","DOIUrl":null,"url":null,"abstract":"High pressure ion chambers (HPIC) and NaI(Tl) scintillation detectors are widely used to monitor the ambient dose equivalent rate H*(10) within and around the Korean nuclear facilities. However, HPIC cannot provide spectrometric information and NaI(Tl) detector is limited in identifying nuclides, such as I, Cs, and Cs, released from nuclear facilities owing to its insufficient energy resolution. This study employed four halide scintillators – LaBr(Ce), CeBr, and SrI(Eu) – to measure the ambient dose equivalent rate and detect gamma nuclides from measured energy spectrum. First, the pulse–shaping time in the signal processing unit was optimized for each scintillator. Second, energy resolution and counting efficiency were estimated for Cs and Co. Finally, an irradiation test was performed to estimate the dose rate. Based on these results, LaBr(Ce) and NaI(Tl) were selected as in situ gamma spectrometry system for measuring environmental radiation, and field experiments were conducted near the Fukushima Daiichi nuclear power plant to measure the dose rate.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.net.2024.08.042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High pressure ion chambers (HPIC) and NaI(Tl) scintillation detectors are widely used to monitor the ambient dose equivalent rate H*(10) within and around the Korean nuclear facilities. However, HPIC cannot provide spectrometric information and NaI(Tl) detector is limited in identifying nuclides, such as I, Cs, and Cs, released from nuclear facilities owing to its insufficient energy resolution. This study employed four halide scintillators – LaBr(Ce), CeBr, and SrI(Eu) – to measure the ambient dose equivalent rate and detect gamma nuclides from measured energy spectrum. First, the pulse–shaping time in the signal processing unit was optimized for each scintillator. Second, energy resolution and counting efficiency were estimated for Cs and Co. Finally, an irradiation test was performed to estimate the dose rate. Based on these results, LaBr(Ce) and NaI(Tl) were selected as in situ gamma spectrometry system for measuring environmental radiation, and field experiments were conducted near the Fukushima Daiichi nuclear power plant to measure the dose rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卤化物闪烁体在环境监测系统伽马射线分光计基础上的剂量测定性能
高压离子室(HPIC)和 NaI(Tl)闪烁探测器被广泛用于监测韩国核设施内部和周围的环境剂量当量率 H*(10)。然而,HPIC 无法提供光谱信息,而 NaI(Tl)探测器由于能量分辨率不足,在识别核设施释放的 I、Cs 和 Cs 等核素方面受到限制。这项研究采用了四种卤化物闪烁体--LaBr(Ce)、CeBr 和 SrI(Eu)--来测量环境剂量当量率,并从测量的能谱中探测伽马核素。首先,针对每种闪烁体优化了信号处理装置中的脉冲整形时间。其次,对铯和钴的能量分辨率和计数效率进行了估算。最后,进行了辐照试验,以估算剂量率。根据这些结果,我们选择了 LaBr(Ce)和 NaI(Tl)作为测量环境辐射的原位伽马能谱系统,并在福岛第一核电站附近进行了实地实验,以测量剂量率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
期刊最新文献
The impact of pressure rate on the physical, structural and gamma-ray shielding capabilities of novel light-weight clay bricks Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations Technical reviewers for Nuclear Engineering and Technology, 2024 An innovative and efficient implementation of matrix-free Newton krylov method for neutronics/thermal-hydraulics coupling simulation Numerical investigation of welding deformation diminution for double shell structure using the layered inherent strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1