Direct formate anion exchange membrane fuel cells with a PdAu bimetallic nanoparticle anode electrocatalyst obtained by metal vapor synthesis†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-08-29 DOI:10.1039/D4YA00324A
Carolina Castello, Tailor Peruzzolo, Marco Bellini, Maria V. Pagliaro, Francesco Bartoli, Enrico Berretti, Lorenzo Poggini, Emanuela Pitzalis, Claudio Evangelisti and Hamish A. Miller
{"title":"Direct formate anion exchange membrane fuel cells with a PdAu bimetallic nanoparticle anode electrocatalyst obtained by metal vapor synthesis†","authors":"Carolina Castello, Tailor Peruzzolo, Marco Bellini, Maria V. Pagliaro, Francesco Bartoli, Enrico Berretti, Lorenzo Poggini, Emanuela Pitzalis, Claudio Evangelisti and Hamish A. Miller","doi":"10.1039/D4YA00324A","DOIUrl":null,"url":null,"abstract":"<p >Fuels can be produced from the electrochemical reduction of industrial waste CO<small><sub>2</sub></small> (e-fuels) using renewable energy and hence are an attractive option for the storage of renewable energy in a chemical form. The energy stored in the e-Fuel may be recovered on-demand using a direct fuel cell thus completing a carbon neutral cycle. Anion exchange membrane fuel cells (AEMFCs) are versatile devices that can be fed by both a gaseous fuel such as H<small><sub>2</sub></small> and with liquid fuels (<em>e.g.</em> alcohols, formate, hydrazine, NaBH<small><sub>4</sub></small>). Formate is a molecule that can be easily obtained by the electrochemical reduction of CO<small><sub>2</sub></small> with high selectivity. Efficient re-transformation of the energy stored in the chemical bonds into electrical energy requires the development of efficient and stable electrocatalysts. Palladium alloy catalysts are highly active under alkaline conditions when Pd is mixed with more oxophilic transition metals. Here we report that enhanced activity and stability can be obtained with Au–Pd alloy nanoparticles when compared to a Pd catalyst. Both catalysts are prepared by a metal vapour synthesis method. We show that the key to enhanced performance is the partial segregation of Au to the NP surface that increases oxophilicity and favours the adsorption and transfer of OH<small><sup>−</sup></small> species to the active Pd sites. This enhanced activity translates to high power densities and performance stability when employed in AEMFCs fed with aqueous potassium formate fuel (Peak power density of 0.14 W cm<small><sup>−2</sup></small>, energy efficiency of 33%, faradaic efficiency of 80%).</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2520-2529"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00324a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00324a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fuels can be produced from the electrochemical reduction of industrial waste CO2 (e-fuels) using renewable energy and hence are an attractive option for the storage of renewable energy in a chemical form. The energy stored in the e-Fuel may be recovered on-demand using a direct fuel cell thus completing a carbon neutral cycle. Anion exchange membrane fuel cells (AEMFCs) are versatile devices that can be fed by both a gaseous fuel such as H2 and with liquid fuels (e.g. alcohols, formate, hydrazine, NaBH4). Formate is a molecule that can be easily obtained by the electrochemical reduction of CO2 with high selectivity. Efficient re-transformation of the energy stored in the chemical bonds into electrical energy requires the development of efficient and stable electrocatalysts. Palladium alloy catalysts are highly active under alkaline conditions when Pd is mixed with more oxophilic transition metals. Here we report that enhanced activity and stability can be obtained with Au–Pd alloy nanoparticles when compared to a Pd catalyst. Both catalysts are prepared by a metal vapour synthesis method. We show that the key to enhanced performance is the partial segregation of Au to the NP surface that increases oxophilicity and favours the adsorption and transfer of OH species to the active Pd sites. This enhanced activity translates to high power densities and performance stability when employed in AEMFCs fed with aqueous potassium formate fuel (Peak power density of 0.14 W cm−2, energy efficiency of 33%, faradaic efficiency of 80%).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用通过金属蒸气合成获得的 PdAu 双金属纳米粒子阳极电催化剂的直接甲酸阴离子交换膜燃料电池
利用可再生能源通过电化学还原工业废弃物二氧化碳(电子燃料)可以生产出燃料,因此是以化学形式储存可再生能源的一种有吸引力的选择。电子燃料中储存的能量可按需使用直接燃料电池进行回收,从而完成碳中和循环。阴离子交换膜燃料电池(AEMFCs)是一种多功能设备,既可以使用 H2 等气体燃料,也可以使用液体燃料(如酒精、甲酸盐、肼、NaBH4)。甲酸盐是一种可以通过电化学还原二氧化碳而轻松获得的分子,具有很高的选择性。要有效地将化学键中储存的能量重新转化为电能,需要开发高效稳定的电催化剂。当钯与更亲氧化的过渡金属混合时,钯合金催化剂在碱性条件下具有很高的活性。我们在此报告,与钯催化剂相比,金钯合金纳米颗粒可获得更高的活性和稳定性。这两种催化剂都是通过金属蒸气合成法制备的。我们的研究表明,性能增强的关键在于金部分偏析到了纳米粒子表面,从而增加了亲氧化性,有利于吸附 OH- 物种并将其转移到活性钯位点。在以甲酸钾水溶液为燃料的 AEMFC 中使用时,这种增强的活性可转化为高功率密度和性能稳定性(峰值功率密度为 0.14 W cm-2、能效为 33%、远动效率为 80%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Correction: Steady states and kinetic modelling of the acid-catalysed ethanolysis of glucose, cellulose, and corn cob to ethyl levulinate. Back cover Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices Inside back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1