{"title":"Numerical Analysis of a Linear Quasi-Static and Vibrational Response of Gypsum Sandwich Panels Reinforced with Fiberglass Fabrics","authors":"A. Wahrhaftig, R. Carvalho, L. Brito","doi":"10.1007/s11029-024-10227-w","DOIUrl":null,"url":null,"abstract":"<p>To expand plaster utilization as a binder, mechanical behavior of sandwich panels consisting of two faces of plaster reinforced with fiberglass fabrics and a core of extruded polystyrene foam was studied. Using software based on the finite element method, computational models were utilized to simulate the four-point bending test. Two scenarios were examined: assuming a linear stress-strain curve for the material and employing nonlinear geometric analysis. These computational simulations allowed to determine loading limits and vertical displacements. After determining the flexural stiffness, the vibration response was calculated via an analytical procedure. This investigation proved that sandwich panels with greater thicknesses and volumes of reinforcements on the plaster faces exhibited greater load-bearing capacity, smaller displacements, greater resistance to traction and compression, and greater stiffness. Notably, panel 3, which had the thickness and volume content of reinforcement in the composite faces 24.71 and 66.67% higher, respectively, than reference panel, presented the best static and vibrational responses.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"58 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10227-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
To expand plaster utilization as a binder, mechanical behavior of sandwich panels consisting of two faces of plaster reinforced with fiberglass fabrics and a core of extruded polystyrene foam was studied. Using software based on the finite element method, computational models were utilized to simulate the four-point bending test. Two scenarios were examined: assuming a linear stress-strain curve for the material and employing nonlinear geometric analysis. These computational simulations allowed to determine loading limits and vertical displacements. After determining the flexural stiffness, the vibration response was calculated via an analytical procedure. This investigation proved that sandwich panels with greater thicknesses and volumes of reinforcements on the plaster faces exhibited greater load-bearing capacity, smaller displacements, greater resistance to traction and compression, and greater stiffness. Notably, panel 3, which had the thickness and volume content of reinforcement in the composite faces 24.71 and 66.67% higher, respectively, than reference panel, presented the best static and vibrational responses.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.