T. Aydemir, G. D. Kugabaeva, K. A. Kydralieva, L. S. Bondarenko, O. V. Tushavina, I. E. Uflyand, G. I. Dzhardimalieva
{"title":"Comparative Damping of Composite Materials Filled With Metal Polymer Complex and FeCo/C-N Nanoparticles","authors":"T. Aydemir, G. D. Kugabaeva, K. A. Kydralieva, L. S. Bondarenko, O. V. Tushavina, I. E. Uflyand, G. I. Dzhardimalieva","doi":"10.1007/s11029-024-10216-z","DOIUrl":null,"url":null,"abstract":"<p>Materials based on hybrid bimetallic particles with a polyacrylamide shell can act as an efficient centers of energy dissipation in filled composites and reveal more effectiveness than nanoparticles, which, due to their higher surface-to-volume ratio and low interfacial adhesion, can affect the final composite performance. Two types of fillers were obtained as part of polymer-mediated synthesis and subsequent thermolysis and later encapsulated into a LDPE matrix. The metal-polymer complex increases the damping capacity of the hosting material up to 25% at higher concentration. However, the nanoparticles showed a strong increase at 5 wt% (by 20%) and then a sharp decline, which makes metal-polymer particles more suitable for damping purposes.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10216-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Materials based on hybrid bimetallic particles with a polyacrylamide shell can act as an efficient centers of energy dissipation in filled composites and reveal more effectiveness than nanoparticles, which, due to their higher surface-to-volume ratio and low interfacial adhesion, can affect the final composite performance. Two types of fillers were obtained as part of polymer-mediated synthesis and subsequent thermolysis and later encapsulated into a LDPE matrix. The metal-polymer complex increases the damping capacity of the hosting material up to 25% at higher concentration. However, the nanoparticles showed a strong increase at 5 wt% (by 20%) and then a sharp decline, which makes metal-polymer particles more suitable for damping purposes.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.