T. Islam, S. Hossain, M. A. Jalil, S. M. Z. Mujahid, T. K. Bhoumik, R. U. Mahmud
{"title":"Development of Reinforced Polyester Hybrid Composites Using Varied Ratios of Jack Tree and Jute Fibers with Eggshell Filler","authors":"T. Islam, S. Hossain, M. A. Jalil, S. M. Z. Mujahid, T. K. Bhoumik, R. U. Mahmud","doi":"10.1007/s11029-024-10228-9","DOIUrl":null,"url":null,"abstract":"<p>A novel hybrid polyester composite comprising jack tree and jute fibers reinforced with eggshell filler is presented addressing the global need for sustainable alternatives to synthetic materials. The comprehensive analysis of physical and mechanical properties, such as tensile strength, impact resistance, hardness, water uptake was carried out using Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). The manual hand layup technique was employed to ensure reproducible composite production. The resulting materials exhibited favorable mechanical properties, with the tensile strength and elongation balanced between jute and jack tree fibers, augmented by the reinforcing effect of the eggshell filler. Jack tree fibers significantly enhanced impact strength, contributing to the overall toughness of the composite. Hardness testing revealed higher crystallinity attributed to jack tree fibers. Water absorption characteristics demonstrated a nuanced interaction between cellulose abundance and fiber mass. FTIR spectroscopy provided molecular insights, while SEM analysis visually depicted the intricate structure of the composite. The amalgamation of jack tree and jute fibers with an eggshell filler not only enhances mechanical prowess but also aligns with global environmental efforts. This research advances sustainable composite materials, offering nuanced insights into the interplay between natural fibers, fillers, and matrices, with implications for eco-friendly solutions in diverse industries. The findings contribute to a greener, more sustainable future in industrial applications.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10228-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
A novel hybrid polyester composite comprising jack tree and jute fibers reinforced with eggshell filler is presented addressing the global need for sustainable alternatives to synthetic materials. The comprehensive analysis of physical and mechanical properties, such as tensile strength, impact resistance, hardness, water uptake was carried out using Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). The manual hand layup technique was employed to ensure reproducible composite production. The resulting materials exhibited favorable mechanical properties, with the tensile strength and elongation balanced between jute and jack tree fibers, augmented by the reinforcing effect of the eggshell filler. Jack tree fibers significantly enhanced impact strength, contributing to the overall toughness of the composite. Hardness testing revealed higher crystallinity attributed to jack tree fibers. Water absorption characteristics demonstrated a nuanced interaction between cellulose abundance and fiber mass. FTIR spectroscopy provided molecular insights, while SEM analysis visually depicted the intricate structure of the composite. The amalgamation of jack tree and jute fibers with an eggshell filler not only enhances mechanical prowess but also aligns with global environmental efforts. This research advances sustainable composite materials, offering nuanced insights into the interplay between natural fibers, fillers, and matrices, with implications for eco-friendly solutions in diverse industries. The findings contribute to a greener, more sustainable future in industrial applications.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.