{"title":"The Influence of Filler Concentrations and Processing Parameters on the Mechanical Properties of Uncompatibilized CS/HDPE Biocomposites","authors":"L. O. Ejeta, Y. Zheng, Y. Zhou","doi":"10.1007/s11029-024-10218-x","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulose fillers, like cotton stalks, provide a stiffness that enhances the mechanical properties of composites. However, finding an appropriate filler loading for optimizing the mechanical performance of biocomposites remains a challenge, as there are disparities in the optimum filler loadings found in previous studies concerning the use of cotton stalk as a filler in biocomposite manufacturing. Therefore, the need for further investigations is of prime importance. Cotton-stalk-filler-reinforced high-density polyethylene (CS/HDPE) biocomposites were fabricated with different weight proportions (10-50 wt%) of the cotton stalk filler with particle size distributions 425 to 53 μm. The biocomposites were prepared using an extrusion process with a twin-screw extruder followed by compression molding in an electrically heated platen press. Results showed that the composite reinforced with 50 wt% filler gave the optimum values of tensile and flexural moduli.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"83 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10218-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulose fillers, like cotton stalks, provide a stiffness that enhances the mechanical properties of composites. However, finding an appropriate filler loading for optimizing the mechanical performance of biocomposites remains a challenge, as there are disparities in the optimum filler loadings found in previous studies concerning the use of cotton stalk as a filler in biocomposite manufacturing. Therefore, the need for further investigations is of prime importance. Cotton-stalk-filler-reinforced high-density polyethylene (CS/HDPE) biocomposites were fabricated with different weight proportions (10-50 wt%) of the cotton stalk filler with particle size distributions 425 to 53 μm. The biocomposites were prepared using an extrusion process with a twin-screw extruder followed by compression molding in an electrically heated platen press. Results showed that the composite reinforced with 50 wt% filler gave the optimum values of tensile and flexural moduli.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.