Advancing Financial Forecasting: A Comparative Analysis of Neural Forecasting Models N-HiTS and N-BEATS

Mohit Apte, Yashodhara Haribhakta
{"title":"Advancing Financial Forecasting: A Comparative Analysis of Neural Forecasting Models N-HiTS and N-BEATS","authors":"Mohit Apte, Yashodhara Haribhakta","doi":"arxiv-2409.00480","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving field of financial forecasting, the application of\nneural networks presents a compelling advancement over traditional statistical\nmodels. This research paper explores the effectiveness of two specific neural\nforecasting models, N-HiTS and N-BEATS, in predicting financial market trends.\nThrough a systematic comparison with conventional models, this study\ndemonstrates the superior predictive capabilities of neural approaches,\nparticularly in handling the non-linear dynamics and complex patterns inherent\nin financial time series data. The results indicate that N-HiTS and N-BEATS not\nonly enhance the accuracy of forecasts but also boost the robustness and\nadaptability of financial predictions, offering substantial advantages in\nenvironments that require real-time decision-making. The paper concludes with\ninsights into the practical implications of neural forecasting in financial\nmarkets and recommendations for future research directions.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving field of financial forecasting, the application of neural networks presents a compelling advancement over traditional statistical models. This research paper explores the effectiveness of two specific neural forecasting models, N-HiTS and N-BEATS, in predicting financial market trends. Through a systematic comparison with conventional models, this study demonstrates the superior predictive capabilities of neural approaches, particularly in handling the non-linear dynamics and complex patterns inherent in financial time series data. The results indicate that N-HiTS and N-BEATS not only enhance the accuracy of forecasts but also boost the robustness and adaptability of financial predictions, offering substantial advantages in environments that require real-time decision-making. The paper concludes with insights into the practical implications of neural forecasting in financial markets and recommendations for future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进金融预测:神经预测模型 N-HiTS 和 N-BEATS 的比较分析
在快速发展的金融预测领域,与传统统计模型相比,神经网络的应用是一个引人注目的进步。本研究论文探讨了 N-HiTS 和 N-BEATS 这两种特定神经预测模型在预测金融市场趋势方面的有效性。通过与传统模型的系统比较,本研究证明了神经方法的卓越预测能力,尤其是在处理金融时间序列数据中固有的非线性动态和复杂模式方面。结果表明,N-HiTS 和 N-BEATS 不仅提高了预测的准确性,还增强了金融预测的稳健性和适应性,在需要实时决策的环境中具有很大优势。最后,本文深入分析了神经预测在金融市场中的实际意义,并对未来的研究方向提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1