MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing

Boris Ter-Avanesov, Homayoon Beigi
{"title":"MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing","authors":"Boris Ter-Avanesov, Homayoon Beigi","doi":"arxiv-2409.06724","DOIUrl":null,"url":null,"abstract":"We explore the performance of various artificial neural network\narchitectures, including a multilayer perceptron (MLP), Kolmogorov-Arnold\nnetwork (KAN), LSTM-GRU hybrid recursive neural network (RNN) models, and a\ntime-delay neural network (TDNN) for pricing European call options. In this\nstudy, we attempt to leverage the ability of supervised learning methods, such\nas ANNs, KANs, and gradient-boosted decision trees, to approximate complex\nmultivariate functions in order to calibrate option prices based on past market\ndata. The motivation for using ANNs and KANs is the Universal Approximation\nTheorem and Kolmogorov-Arnold Representation Theorem, respectively.\nSpecifically, we use S\\&P 500 (SPX) and NASDAQ 100 (NDX) index options traded\nduring 2015-2023 with times to maturity ranging from 15 days to over 4 years\n(OptionMetrics IvyDB US dataset). Black \\& Scholes's (BS) PDE \\cite{Black1973}\nmodel's performance in pricing the same options compared to real data is used\nas a benchmark. This model relies on strong assumptions, and it has been\nobserved and discussed in the literature that real data does not match its\npredictions. Supervised learning methods are widely used as an alternative for\ncalibrating option prices due to some of the limitations of this model. In our\nexperiments, the BS model underperforms compared to all of the others. Also,\nthe best TDNN model outperforms the best MLP model on all error metrics. We\nimplement a simple self-attention mechanism to enhance the RNN models,\nsignificantly improving their performance. The best-performing model overall is\nthe LSTM-GRU hybrid RNN model with attention. Also, the KAN model outperforms\nthe TDNN and MLP models. We analyze the performance of all models by ticker,\nmoneyness category, and over/under/correctly-priced percentage.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the performance of various artificial neural network architectures, including a multilayer perceptron (MLP), Kolmogorov-Arnold network (KAN), LSTM-GRU hybrid recursive neural network (RNN) models, and a time-delay neural network (TDNN) for pricing European call options. In this study, we attempt to leverage the ability of supervised learning methods, such as ANNs, KANs, and gradient-boosted decision trees, to approximate complex multivariate functions in order to calibrate option prices based on past market data. The motivation for using ANNs and KANs is the Universal Approximation Theorem and Kolmogorov-Arnold Representation Theorem, respectively. Specifically, we use S\&P 500 (SPX) and NASDAQ 100 (NDX) index options traded during 2015-2023 with times to maturity ranging from 15 days to over 4 years (OptionMetrics IvyDB US dataset). Black \& Scholes's (BS) PDE \cite{Black1973} model's performance in pricing the same options compared to real data is used as a benchmark. This model relies on strong assumptions, and it has been observed and discussed in the literature that real data does not match its predictions. Supervised learning methods are widely used as an alternative for calibrating option prices due to some of the limitations of this model. In our experiments, the BS model underperforms compared to all of the others. Also, the best TDNN model outperforms the best MLP model on all error metrics. We implement a simple self-attention mechanism to enhance the RNN models, significantly improving their performance. The best-performing model overall is the LSTM-GRU hybrid RNN model with attention. Also, the KAN model outperforms the TDNN and MLP models. We analyze the performance of all models by ticker, moneyness category, and over/under/correctly-priced percentage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对 SPX 和 NDX 欧洲看涨期权定价的 MLP、XGBoost、KAN、TDNN 和 LSTM-GRU 混合 RNN 注意事项
我们探索了各种人工神经网络架构的性能,包括用于欧式看涨期权定价的多层感知器(MLP)、Kolmogorov-Arnold 网络(KAN)、LSTM-GRU 混合递归神经网络(RNN)模型和时间延迟神经网络(TDNN)。在这项研究中,我们试图利用监督学习方法的能力,如 ANNs、KANs 和梯度提升决策树,来逼近复杂的多变量函数,从而根据过去的市场数据来校准期权价格。使用ANNs和KANs的动机分别是普适逼近定理和科尔莫哥罗夫-阿诺德表征定理。具体来说,我们使用了2015-2023年间交易的标准普尔500(SPX)和纳斯达克100(NDX)指数期权,到期时间从15天到超过4年不等(OptionMetrics IvyDB美国数据集)。布莱克和斯科尔斯(Black & Scholes,BS)的 PDE 模型与真实数据相比在相同期权定价方面的表现被用作基准。该模型依赖于强有力的假设,文献中已经观察到并讨论过真实数据与其预测不符的情况。由于该模型的一些局限性,监督学习方法被广泛用作校准期权价格的替代方法。在我们的实验中,BS 模型的表现不如其他所有模型。此外,在所有误差指标上,最佳 TDNN 模型都优于最佳 MLP 模型。我们实施了一种简单的自我关注机制来增强 RNN 模型,从而显著提高了它们的性能。总体表现最好的模型是带有注意力的 LSTM-GRU 混合 RNN 模型。此外,KAN 模型的性能也优于 TDNN 和 MLP 模型。我们按股票、资金类别和定价过高/过低/过高定价百分比分析了所有模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1