{"title":"Environment-friendly approach to rGO–TMD composite synthesis for use as a supercapacitor","authors":"Ragini Chaturvedi, Amit Garg","doi":"10.1007/s12034-024-03310-4","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to their characteristics like fast charge–discharge rate, very long life, simple geometry and eco-friendly nature, supercapacitor is an emerging technology to fulfil the present and future requirements of the energy. The performance of a supercapacitor is derived from the composition and morphology of the electrode. 2D materials possess various excellent structural properties like surface area, flexibility in the atomic scale dimension and mechanical strength with high electrical conductivity. This makes them an entrusted material to be used as an electrode material. The teaming of 2D materials and layered transition metal dichalcogenides have been of great interest for electrode materials. In this study, the reduction of graphene oxide is done by an environment-friendly synthesis method using cow urine, and then, synthesizing the reduced graphene oxide (rGO) and transition metal dichalcogenides (TMD) composite using the refluxing method. The modified pencil graphite electrode (PGE) was functionalized using the above composite and the performance is comparable to that of glassy carbon electrode. Our main motive was to develop a low-cost, sustainable and highly effective MoS<sub>2</sub>–rGO/PGE, which is completely based on an environment and eco-friendly method using natural precursors. The prepared MoS<sub>2</sub>–rGO nanocomposite was characterized by XRD, SEM and EDX, which revealed the formation as well as its morphological scenario. MoS<sub>2</sub>–rGO/PGE is explored as electrode material by electrochemical characterization with the 3-electrode system through cyclic voltammetry and electrochemical impedance spectroscopy, which exhibit maximum specific capacitance with good cycle stability.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03310-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to their characteristics like fast charge–discharge rate, very long life, simple geometry and eco-friendly nature, supercapacitor is an emerging technology to fulfil the present and future requirements of the energy. The performance of a supercapacitor is derived from the composition and morphology of the electrode. 2D materials possess various excellent structural properties like surface area, flexibility in the atomic scale dimension and mechanical strength with high electrical conductivity. This makes them an entrusted material to be used as an electrode material. The teaming of 2D materials and layered transition metal dichalcogenides have been of great interest for electrode materials. In this study, the reduction of graphene oxide is done by an environment-friendly synthesis method using cow urine, and then, synthesizing the reduced graphene oxide (rGO) and transition metal dichalcogenides (TMD) composite using the refluxing method. The modified pencil graphite electrode (PGE) was functionalized using the above composite and the performance is comparable to that of glassy carbon electrode. Our main motive was to develop a low-cost, sustainable and highly effective MoS2–rGO/PGE, which is completely based on an environment and eco-friendly method using natural precursors. The prepared MoS2–rGO nanocomposite was characterized by XRD, SEM and EDX, which revealed the formation as well as its morphological scenario. MoS2–rGO/PGE is explored as electrode material by electrochemical characterization with the 3-electrode system through cyclic voltammetry and electrochemical impedance spectroscopy, which exhibit maximum specific capacitance with good cycle stability.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.