Yunpeng Liu
(, ), Shunzheng Zhao
(, ), Jiajun Zhong
(, ), Jianglong Liu
(, ), Baotong Chen
(, ), You Liao
(, ), Lei Yao
(, ), Zhongjun Chen
(, ), Buxing Han
(, ), Zhonghua Wu
(, )
{"title":"In-situ tracking CO2-assisted isothermal-isobaric synthesis of self-assembled Bi-based photocatalyst using novel SAXS/XRD/XAFS combined technique","authors":"Yunpeng Liu \n (, ), Shunzheng Zhao \n (, ), Jiajun Zhong \n (, ), Jianglong Liu \n (, ), Baotong Chen \n (, ), You Liao \n (, ), Lei Yao \n (, ), Zhongjun Chen \n (, ), Buxing Han \n (, ), Zhonghua Wu \n (, )","doi":"10.1007/s40843-024-3069-1","DOIUrl":null,"url":null,"abstract":"<div><p>The synthetic path of a catalyst determines its morphology, species, and performance, and <i>in-situ</i> monitoring the catalyst formation process is fascinating and challenging. Herein, a newly developed synchrotron radiation small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined technique was used to <i>in-situ</i> monitor the isothermal-isobaric synthesis process of CO<sub>2</sub>-assisted (BiO)<sub>2</sub>CO<sub>3</sub> (BOC) photocatalyst, and the atomic near-neighbor structure, crystalline structure and nanoscale particle size evolution with reaction time were simultaneously captured. The results show that both polyvinyl pyrrolidone and CO<sub>2</sub> formed uniformly-distributed nano-sized scatterers in the Bi-based precursor solution, presenting short-range ordered structures to a certain extent. The as-prepared BOC catalytic particles underwent the evolution process of initial Bi(OH)<sub>3</sub> precipitate, early-stage formed KBiO<sub>2</sub> molecules, intermediate amorphous (BiO)<sub>4</sub>CO<sub>3</sub>(OH)<sub>2</sub> nanoparticles, and finally crystallized flower-like BOC particles self-assembled by nanosheets. The flower-like BOC particles, Bi/BOC composite, and Bi nanospheres were further prepared with different synthesis paths. Flower-like BOC particles showed the best photocatalytic degradation performance of RhB. Scavenger experiment and theoretical calculation revealed the photocatalytic mechanisms of BOC. This work has implications for path-dependent synthesis of other catalysts.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3609 - 3621"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3069-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthetic path of a catalyst determines its morphology, species, and performance, and in-situ monitoring the catalyst formation process is fascinating and challenging. Herein, a newly developed synchrotron radiation small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined technique was used to in-situ monitor the isothermal-isobaric synthesis process of CO2-assisted (BiO)2CO3 (BOC) photocatalyst, and the atomic near-neighbor structure, crystalline structure and nanoscale particle size evolution with reaction time were simultaneously captured. The results show that both polyvinyl pyrrolidone and CO2 formed uniformly-distributed nano-sized scatterers in the Bi-based precursor solution, presenting short-range ordered structures to a certain extent. The as-prepared BOC catalytic particles underwent the evolution process of initial Bi(OH)3 precipitate, early-stage formed KBiO2 molecules, intermediate amorphous (BiO)4CO3(OH)2 nanoparticles, and finally crystallized flower-like BOC particles self-assembled by nanosheets. The flower-like BOC particles, Bi/BOC composite, and Bi nanospheres were further prepared with different synthesis paths. Flower-like BOC particles showed the best photocatalytic degradation performance of RhB. Scavenger experiment and theoretical calculation revealed the photocatalytic mechanisms of BOC. This work has implications for path-dependent synthesis of other catalysts.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.