Elongated antiferromagnetic skyrmion in two-dimensional RuF4

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-08-20 DOI:10.1007/s40843-024-3020-y
Mu Lan, Rong Wang, Shihao Wei, Lezhong Li, Wenning Ren, Xing Zhang, Xi Zhang, Gang Xiang
{"title":"Elongated antiferromagnetic skyrmion in two-dimensional RuF4","authors":"Mu Lan, Rong Wang, Shihao Wei, Lezhong Li, Wenning Ren, Xing Zhang, Xi Zhang, Gang Xiang","doi":"10.1007/s40843-024-3020-y","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) antiferromagnetic (AFM) skyrmions are free from stray magnetic field and skyrmion Hall effect, and can be driven by a small current density up to a high speed, desirable for low-power spintronic applications. However, most 2D AFM skyrmions are realized in complex heterostructured materials, which impedes the dense integration of spintronic devices. Here, we propose that 2D AFM skyrmions can be achieved in ruthenium tetrafluoride (RuF<sub>4</sub>) monolayer using hybrid functional theory combined with atomistic spin dynamics simulations. Our study indicates that 2D RuF<sub>4</sub> is dynamically stable and its nondegenerate vibration modes in optical branches are either Raman or infrared active. Furthermore, 2D RuF<sub>4</sub> acts as an indirect bandgap semiconductor with an out-of-plane AFM state. Notably, the presence of a weak Dzyaloshinskii-Moriya interaction in 2D RuF<sub>4</sub> leads to a spin spiral ground state at low temperatures, enabling the formation of AFM skyrmions with possible length modulation by an external magnetic field. Our results give insight into 2D RuF<sub>4</sub> and may provide an intriguing platform for 2D AFM skyrmion-based spintronic applications.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-024-3020-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) antiferromagnetic (AFM) skyrmions are free from stray magnetic field and skyrmion Hall effect, and can be driven by a small current density up to a high speed, desirable for low-power spintronic applications. However, most 2D AFM skyrmions are realized in complex heterostructured materials, which impedes the dense integration of spintronic devices. Here, we propose that 2D AFM skyrmions can be achieved in ruthenium tetrafluoride (RuF4) monolayer using hybrid functional theory combined with atomistic spin dynamics simulations. Our study indicates that 2D RuF4 is dynamically stable and its nondegenerate vibration modes in optical branches are either Raman or infrared active. Furthermore, 2D RuF4 acts as an indirect bandgap semiconductor with an out-of-plane AFM state. Notably, the presence of a weak Dzyaloshinskii-Moriya interaction in 2D RuF4 leads to a spin spiral ground state at low temperatures, enabling the formation of AFM skyrmions with possible length modulation by an external magnetic field. Our results give insight into 2D RuF4 and may provide an intriguing platform for 2D AFM skyrmion-based spintronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 RuF4 中的拉长反铁磁天线
二维(2D)反铁磁性(AFM)天线离子不受杂散磁场和天线霍尔效应的影响,可以通过较小的电流密度实现高速驱动,是低功耗自旋电子应用的理想之选。然而,大多数二维 AFM 天幕都是在复杂的异质结构材料中实现的,这阻碍了自旋电子器件的密集集成。在这里,我们利用混合函数理论结合原子自旋动力学模拟,提出了在四氟化钌(RuF4)单层中实现二维原子力显微镜天幕的方法。我们的研究表明,二维 RuF4 具有动态稳定性,其光学分支中的非enerate 振动模式具有拉曼或红外活性。此外,二维 RuF4 还是一种具有平面外 AFM 状态的间接带隙半导体。值得注意的是,二维 RuF4 中存在微弱的 Dzyaloshinskii-Moriya 相互作用,这导致了低温下的自旋螺旋基态,从而形成了可通过外部磁场进行长度调制的 AFM 天线。我们的研究结果使人们对二维 RuF4 有了深入的了解,并可能为基于二维 AFM 天线的自旋电子应用提供一个有趣的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Optimization of boron-containing acceptors towards high-efficiency TADF emitters: sky-blue OLEDs with external quantum efficiency of 32.6% In-situ tracking CO2-assisted isothermal-isobaric synthesis of self-assembled Bi-based photocatalyst using novel SAXS/XRD/XAFS combined technique Special kinetics features of scandium antimonide thin films conducive to swiftly embedded phase-change memory applications Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1