The Relationship between Cardiomyocyte Action Potentials and Ion Concentrations: Machine Learning Prediction Modeling and Analysis of Spontaneous Spiral Wave Generation Mechanisms

Symmetry Pub Date : 2024-09-02 DOI:10.3390/sym16091136
Jing Bai, Chunfu Zhang, Yanchun Liang, Adriano Tavares, Lidong Wang, Xue Gu, Ziyao Meng
{"title":"The Relationship between Cardiomyocyte Action Potentials and Ion Concentrations: Machine Learning Prediction Modeling and Analysis of Spontaneous Spiral Wave Generation Mechanisms","authors":"Jing Bai, Chunfu Zhang, Yanchun Liang, Adriano Tavares, Lidong Wang, Xue Gu, Ziyao Meng","doi":"10.3390/sym16091136","DOIUrl":null,"url":null,"abstract":"The changes in cardiomyocyte action potentials are related to variations in intra- and extracellular ion concentrations. Abnormal ion concentrations can lead to irregular action potentials, subsequently affecting wave propagation in myocardial tissue and potentially resulting in the formation of spiral waves. Therefore, timely monitoring of ion concentration changes is essential. This study presents a novel machine learning classification model that predicts ion concentration changes based on action potential variation data. We conducted simulations using a single-cell model, generating a dataset of 850 action potential variations corresponding to different ion concentration changes. The model demonstrated excellent predictive performance, achieving an accuracy of 0.988 on the test set. Additionally, the causes of spontaneous spiral wave generation in the heart are insufficiently studied. This study presents a new mechanism whereby changes in extracellular potassium ion concentration leads to the spontaneous generation of spiral waves. By constructing composite myocardial tissue containing both myocardial and fibroblast cells, we observed that variations in extracellular potassium ion concentration can either trigger or inhibit cardiomyocyte excitation. We developed three tissue structures, and by appropriately adjusting the extracellular potassium ion concentration, we observed the spontaneous generation of single spiral waves, symmetrical spiral wave pairs, and asymmetrical double spiral waves.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The changes in cardiomyocyte action potentials are related to variations in intra- and extracellular ion concentrations. Abnormal ion concentrations can lead to irregular action potentials, subsequently affecting wave propagation in myocardial tissue and potentially resulting in the formation of spiral waves. Therefore, timely monitoring of ion concentration changes is essential. This study presents a novel machine learning classification model that predicts ion concentration changes based on action potential variation data. We conducted simulations using a single-cell model, generating a dataset of 850 action potential variations corresponding to different ion concentration changes. The model demonstrated excellent predictive performance, achieving an accuracy of 0.988 on the test set. Additionally, the causes of spontaneous spiral wave generation in the heart are insufficiently studied. This study presents a new mechanism whereby changes in extracellular potassium ion concentration leads to the spontaneous generation of spiral waves. By constructing composite myocardial tissue containing both myocardial and fibroblast cells, we observed that variations in extracellular potassium ion concentration can either trigger or inhibit cardiomyocyte excitation. We developed three tissue structures, and by appropriately adjusting the extracellular potassium ion concentration, we observed the spontaneous generation of single spiral waves, symmetrical spiral wave pairs, and asymmetrical double spiral waves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心肌细胞动作电位与离子浓度的关系:自发螺旋波产生机制的机器学习预测建模与分析
心肌细胞动作电位的变化与细胞内外离子浓度的变化有关。异常的离子浓度会导致不规则的动作电位,进而影响波在心肌组织中的传播,并可能形成螺旋波。因此,及时监测离子浓度变化至关重要。本研究提出了一种新型机器学习分类模型,可根据动作电位变化数据预测离子浓度变化。我们使用单细胞模型进行了模拟,生成了与不同离子浓度变化相对应的 850 个动作电位变化数据集。该模型表现出卓越的预测性能,在测试集上达到了 0.988 的准确率。此外,对心脏自发螺旋波产生的原因研究不足。本研究提出了细胞外钾离子浓度变化导致螺旋波自发产生的新机制。通过构建包含心肌细胞和成纤维细胞的复合心肌组织,我们观察到细胞外钾离子浓度的变化可以触发或抑制心肌细胞的兴奋。我们开发了三种组织结构,通过适当调节细胞外钾离子浓度,我们观察到了单螺旋波、对称螺旋波对和不对称双螺旋波的自发产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Moran Walk with Resets The Optimization of Aviation Technologies and Design Strategies for a Carbon-Neutral Future A Channel-Sensing-Based Multipath Multihop Cooperative Transmission Mechanism for UE Aggregation in Asymmetric IoE Scenarios A New Multimodal Modification of the Skew Family of Distributions: Properties and Applications to Medical and Environmental Data Balance Controller Design for Inverted Pendulum Considering Detail Reward Function and Two-Phase Learning Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1