{"title":"Dynamic path planning fusion algorithm with improved A* algorithm and dynamic window approach","authors":"Jianfeng Zhang, Jielong Guo, Daxin Zhu, Yufang Xie","doi":"10.1007/s13042-024-02377-z","DOIUrl":null,"url":null,"abstract":"<p>In the field of robotics, path planning in complex dynamic environments has become a significant research hotspot. Existing methods often suffer from inadequate dynamic obstacle avoidance capabilities and low exploration efficiency. These issues primarily arise from inconsistencies caused by insufficient utilization of environmental maps in actual path planning. To address these challenges, we propose an improved algorithm that integrates the enhanced A* algorithm with the optimized dynamic window approach (DWA). The enhanced A* algorithm improves the robot’s path smoothness and accelerates global exploration efficiency, while the optimized DWA enhances local static and dynamic obstacle avoidance capabilities. We performed simulation experiments using MATLAB and conducted experiments in real dynamic environments simulated with Gazebo. Simulation results indicate that, compared to the traditional A* algorithm, our method optimizes traversed grids by 25% and reduces time by 23% in global planning. In dynamic obstacle avoidance, our approach improves path length by 2.7% and reduces time by 19.2% compared to the traditional DWA, demonstrating significant performance enhancements.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"3 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02377-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of robotics, path planning in complex dynamic environments has become a significant research hotspot. Existing methods often suffer from inadequate dynamic obstacle avoidance capabilities and low exploration efficiency. These issues primarily arise from inconsistencies caused by insufficient utilization of environmental maps in actual path planning. To address these challenges, we propose an improved algorithm that integrates the enhanced A* algorithm with the optimized dynamic window approach (DWA). The enhanced A* algorithm improves the robot’s path smoothness and accelerates global exploration efficiency, while the optimized DWA enhances local static and dynamic obstacle avoidance capabilities. We performed simulation experiments using MATLAB and conducted experiments in real dynamic environments simulated with Gazebo. Simulation results indicate that, compared to the traditional A* algorithm, our method optimizes traversed grids by 25% and reduces time by 23% in global planning. In dynamic obstacle avoidance, our approach improves path length by 2.7% and reduces time by 19.2% compared to the traditional DWA, demonstrating significant performance enhancements.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems