{"title":"Iterative filter pruning with combined feature maps and knowledge distillation","authors":"Yajun Liu, Kefeng Fan, Wenju Zhou","doi":"10.1007/s13042-024-02371-5","DOIUrl":null,"url":null,"abstract":"<p>Convolutional neural networks (CNNs) have been successfully implemented in various computer vision tasks. However, the remarkable achievements are accompanied by high memory and high computation, which hinder the deployment and application of CNNs on resource-constrained mobile devices. Filter pruning is proposed as an effective method to solve the above problems. In this paper, we propose an iterative filter pruning method that combines feature map properties and knowledge distillation. This method can maximize the important feature information (e.g., spatial features) in the feature map by calculating the information capacity and feature relevance of the feature map, and then pruning based on the set criteria. Then, the pruned network learns the complete feature information of the standard CNN architecture in order to quickly and completely recover the lost accuracy before the next pruning operation. The alternating operation of pruning and knowledge distillation can effectively and comprehensively achieve network compression. Experiments on image classification datasets via mainstream CNN architectures indicate the effectiveness of our approach. For example, on CIFAR-10, our method reduces Floating Point Operations (FLOPs) by 71.8% and parameters by 71.0% with an accuracy improvement of 0.24% over the ResNet-110 benchmark. On ImageNet, our method achieves 55.6% reduction in FLOPs and 52.5% reduction in model memory at the cost of losing only 0.17% of Top-5 on ResNet-50.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"73 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02371-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks (CNNs) have been successfully implemented in various computer vision tasks. However, the remarkable achievements are accompanied by high memory and high computation, which hinder the deployment and application of CNNs on resource-constrained mobile devices. Filter pruning is proposed as an effective method to solve the above problems. In this paper, we propose an iterative filter pruning method that combines feature map properties and knowledge distillation. This method can maximize the important feature information (e.g., spatial features) in the feature map by calculating the information capacity and feature relevance of the feature map, and then pruning based on the set criteria. Then, the pruned network learns the complete feature information of the standard CNN architecture in order to quickly and completely recover the lost accuracy before the next pruning operation. The alternating operation of pruning and knowledge distillation can effectively and comprehensively achieve network compression. Experiments on image classification datasets via mainstream CNN architectures indicate the effectiveness of our approach. For example, on CIFAR-10, our method reduces Floating Point Operations (FLOPs) by 71.8% and parameters by 71.0% with an accuracy improvement of 0.24% over the ResNet-110 benchmark. On ImageNet, our method achieves 55.6% reduction in FLOPs and 52.5% reduction in model memory at the cost of losing only 0.17% of Top-5 on ResNet-50.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems