Jinlu Zhang, Lixin Wei, Zeyin Guo, Ziyu Hu, Haijun Che
{"title":"An improved many-objective meta-heuristic adaptive decomposition algorithm based on mutation individual position detection","authors":"Jinlu Zhang, Lixin Wei, Zeyin Guo, Ziyu Hu, Haijun Che","doi":"10.1007/s13042-024-02297-y","DOIUrl":null,"url":null,"abstract":"<p>Industrial applications and optimization problems in reality often involve multiple objectives. Due to the high dimensionality of objective space in many-objective optimization problems (MaOPs), the ability of traditional evolution operators to search the optimal region and generate promising offspring sharply decreases. Besides, as the number of objectives increases, it becomes difficult to balance the convergence and diversity of the population. Considering all these facts, this paper proposes a mutation individual position detection strategy. It estimates both individual fitness and diversity contributions, and assigns appropriate positions to individuals in the mutation operator through individual ranking. Then, by introducing an external population to adjust the weight vectors, its maintenance process takes into account the matching information between the population and the weight vectors. By comparing five representative algorithms, numerical experiments have shown that the algorithm can obtain a well distributed final solution set on optimization problems of various objective scales. Moreover, it also demonstrates advantages in generating excellent offspring individuals and balancing the overall performance of the population. In summary, the algorithm has competitiveness in solving MaOPs.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"3 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02297-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial applications and optimization problems in reality often involve multiple objectives. Due to the high dimensionality of objective space in many-objective optimization problems (MaOPs), the ability of traditional evolution operators to search the optimal region and generate promising offspring sharply decreases. Besides, as the number of objectives increases, it becomes difficult to balance the convergence and diversity of the population. Considering all these facts, this paper proposes a mutation individual position detection strategy. It estimates both individual fitness and diversity contributions, and assigns appropriate positions to individuals in the mutation operator through individual ranking. Then, by introducing an external population to adjust the weight vectors, its maintenance process takes into account the matching information between the population and the weight vectors. By comparing five representative algorithms, numerical experiments have shown that the algorithm can obtain a well distributed final solution set on optimization problems of various objective scales. Moreover, it also demonstrates advantages in generating excellent offspring individuals and balancing the overall performance of the population. In summary, the algorithm has competitiveness in solving MaOPs.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems