{"title":"Auto-LIA: The Automated Vision-Based Leaf Inclination Angle Measurement System Improves Monitoring of Plant Physiology.","authors":"Sijun Jiang,Xingcai Wu,Qi Wang,Zhixun Pei,Yuxiang Wang,Jian Jin,Ying Guo,RunJiang Song,Liansheng Zang,Yong-Jin Liu,Gefei Hao","doi":"10.34133/plantphenomics.0245","DOIUrl":null,"url":null,"abstract":"Plant sensors are commonly used in agricultural production, landscaping, and other fields to monitor plant growth and environmental parameters. As an important basic parameter in plant monitoring, leaf inclination angle (LIA) not only influences light absorption and pesticide loss but also contributes to genetic analysis and other plant phenotypic data collection. The measurements of LIA provide a basis for crop research as well as agricultural management, such as water loss, pesticide absorption, and illumination radiation. On the one hand, existing efficient solutions, represented by light detection and ranging (LiDAR), can provide the average leaf angle distribution of a plot. On the other hand, the labor-intensive schemes represented by hand measurements can show high accuracy. However, the existing methods suffer from low automation and weak leaf-plant correlation, limiting the application of individual plant leaf phenotypes. To improve the efficiency of LIA measurement and provide the correlation between leaf and plant, we design an image-phenotype-based noninvasive and efficient optical sensor measurement system, which combines multi-processes implemented via computer vision technologies and RGB images collected by physical sensing devices. Specifically, we utilize object detection to associate leaves with plants and adopt 3-dimensional reconstruction techniques to recover the spatial information of leaves in computational space. Then, we propose a spatial continuity-based segmentation algorithm combined with a graphical operation to implement the extraction of leaf key points. Finally, we seek the connection between the computational space and the actual physical space and put forward a method of leaf transformation to realize the localization and recovery of the LIA in physical space. Overall, our solution is characterized by noninvasiveness, full-process automation, and strong leaf-plant correlation, which enables efficient measurements at low cost. In this study, we validate Auto-LIA for practicality and compare the accuracy with the best solution that is acquired with an expensive and invasive LiDAR device. Our solution demonstrates its competitiveness and usability at a much lower equipment cost, with an accuracy of only 2. 5° less than that of the widely used LiDAR. As an intelligent processing system for plant sensor signals, Auto-LIA provides fully automated measurement of LIA, improving the monitoring of plant physiological information for plant protection. We make our code and data publicly available at http://autolia.samlab.cn.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"32 1","pages":"0245"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0245","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant sensors are commonly used in agricultural production, landscaping, and other fields to monitor plant growth and environmental parameters. As an important basic parameter in plant monitoring, leaf inclination angle (LIA) not only influences light absorption and pesticide loss but also contributes to genetic analysis and other plant phenotypic data collection. The measurements of LIA provide a basis for crop research as well as agricultural management, such as water loss, pesticide absorption, and illumination radiation. On the one hand, existing efficient solutions, represented by light detection and ranging (LiDAR), can provide the average leaf angle distribution of a plot. On the other hand, the labor-intensive schemes represented by hand measurements can show high accuracy. However, the existing methods suffer from low automation and weak leaf-plant correlation, limiting the application of individual plant leaf phenotypes. To improve the efficiency of LIA measurement and provide the correlation between leaf and plant, we design an image-phenotype-based noninvasive and efficient optical sensor measurement system, which combines multi-processes implemented via computer vision technologies and RGB images collected by physical sensing devices. Specifically, we utilize object detection to associate leaves with plants and adopt 3-dimensional reconstruction techniques to recover the spatial information of leaves in computational space. Then, we propose a spatial continuity-based segmentation algorithm combined with a graphical operation to implement the extraction of leaf key points. Finally, we seek the connection between the computational space and the actual physical space and put forward a method of leaf transformation to realize the localization and recovery of the LIA in physical space. Overall, our solution is characterized by noninvasiveness, full-process automation, and strong leaf-plant correlation, which enables efficient measurements at low cost. In this study, we validate Auto-LIA for practicality and compare the accuracy with the best solution that is acquired with an expensive and invasive LiDAR device. Our solution demonstrates its competitiveness and usability at a much lower equipment cost, with an accuracy of only 2. 5° less than that of the widely used LiDAR. As an intelligent processing system for plant sensor signals, Auto-LIA provides fully automated measurement of LIA, improving the monitoring of plant physiological information for plant protection. We make our code and data publicly available at http://autolia.samlab.cn.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.