Adeeb Hayyan, Khalid M. Abed, Maan Hayyan, Ahmed Jawad Ali, Wan Jefrey Basirun, Sharifah Shahira Syed Putra, Yatimah Alias, Yousef Mohammed Alanazi, Jehad Saleh, Mohd Ali Hashim, Bhaskar Sen Gupta
{"title":"Direct application of tungstosilicic acid hydrate for the treatment of high free fatty acid in acidic crude palm oil and for biodiesel production","authors":"Adeeb Hayyan, Khalid M. Abed, Maan Hayyan, Ahmed Jawad Ali, Wan Jefrey Basirun, Sharifah Shahira Syed Putra, Yatimah Alias, Yousef Mohammed Alanazi, Jehad Saleh, Mohd Ali Hashim, Bhaskar Sen Gupta","doi":"10.1002/aocs.12896","DOIUrl":null,"url":null,"abstract":"<p>This study explored the use of industrial acidic crude palm oil (ACPO) for biodiesel production, facing a significant obstacle due to its high free fatty acid (FFA) content, which complicates the biodiesel production process. Typically, esterification is employed to convert FFAs into fatty acid methyl ester (FAME). Herein, the effectiveness of tungstosilicic acid hydrate (TSAH) as an unsupported heteropoly acid (HPA) catalyst for FFA esterification in ACPO was investigated. The FFA content was reduced from 8.43% to 0.95% under optimum conditions (4 wt% catalyst dosage, a methanol to oil molar ratio of 10:1, 150 min and a temperature of 60°C). Noteworthy, the TSAH catalyst showed stability over 7 cycles. The kinetic analysis revealed that the FFA esterification process closely followed pseudo first-order kinetics, with an <i>R</i><sup>2</sup> value of 0.94. Furthermore, the biodiesel produced from TSAH-treated ACPO meets the standard specifications outlined by ASTM D6751 and EN 14214. This research highlights the effectiveness of TSAH in catalyzing FFA esterification without the need for additional support materials or modifications.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 2","pages":"375-384"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12896","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the use of industrial acidic crude palm oil (ACPO) for biodiesel production, facing a significant obstacle due to its high free fatty acid (FFA) content, which complicates the biodiesel production process. Typically, esterification is employed to convert FFAs into fatty acid methyl ester (FAME). Herein, the effectiveness of tungstosilicic acid hydrate (TSAH) as an unsupported heteropoly acid (HPA) catalyst for FFA esterification in ACPO was investigated. The FFA content was reduced from 8.43% to 0.95% under optimum conditions (4 wt% catalyst dosage, a methanol to oil molar ratio of 10:1, 150 min and a temperature of 60°C). Noteworthy, the TSAH catalyst showed stability over 7 cycles. The kinetic analysis revealed that the FFA esterification process closely followed pseudo first-order kinetics, with an R2 value of 0.94. Furthermore, the biodiesel produced from TSAH-treated ACPO meets the standard specifications outlined by ASTM D6751 and EN 14214. This research highlights the effectiveness of TSAH in catalyzing FFA esterification without the need for additional support materials or modifications.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.