Short-term PM2.5 forecasting using a unique ensemble technique for proactive environmental management initiatives

IF 3.3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Frontiers in Environmental Science Pub Date : 2024-09-10 DOI:10.3389/fenvs.2024.1442644
Hasnain Iftikhar, Moiz Qureshi, Justyna Zywiołek, Javier Linkolk López-Gonzales, Olayan Albalawi
{"title":"Short-term PM2.5 forecasting using a unique ensemble technique for proactive environmental management initiatives","authors":"Hasnain Iftikhar, Moiz Qureshi, Justyna Zywiołek, Javier Linkolk López-Gonzales, Olayan Albalawi","doi":"10.3389/fenvs.2024.1442644","DOIUrl":null,"url":null,"abstract":"Particulate matter with a diameter of 2.5 microns or less (<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula>) is a significant type of air pollution that affects human health due to its ability to persist in the atmosphere and penetrate the respiratory system. Accurate forecasting of particulate matter is crucial for the healthcare sector of any country. To achieve this, in the current work, a new time series ensemble approach is proposed based on various linear (autoregressive, simple exponential smoothing, autoregressive moving average, and theta) and nonlinear (nonparametric autoregressive and neural network autoregressive) models. Three ensemble models are also developed, each employing distinct weighting strategies: equal distribution of weight among all single models (ESME), weight assignment based on training average accuracy errors (ESMT), and weight assignment based on validation mean accuracy measures (ESMV). This technique was applied to daily <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration data from 1 January 2019, to 31 May 2023, in Pakistan’s main cities, including Lahore, Karachi, Peshawar, and Islamabad, to forecast short-term <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentrations. When compared to other models, the best ensemble model (ESMV) demonstrated mean errors ranging from 3.60% to 25.79% in Islamabad, 0.81%–13.52% in Lahore, 1.08%–7.06% in Karachi, and 1.09%–12.11% in Peshawar. These results indicate that the proposed ensemble approach is more efficient and accurate for short-term <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> forecasting than existing models. Furthermore, using the best ensemble model, a forecast was made for the next 15 days (June 1 to 15 June 2023). The forecast showed that in Lahore, the highest <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> value (236.00 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>) was observed on 8 June 2023. Other days also displayed higher and poor air quality throughout the 15 days. Conversely, Karachi experienced moderate <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration levels between 50 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula> and 80 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>. In Peshawar, the <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration levels were consistently unhealthy, with the highest peak (153.00 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>) observed on 9 June 2023. This forecasting experience can assist environmental monitoring organizations in implementing cost-effective planning to minimize air pollution.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"60 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1442644","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Particulate matter with a diameter of 2.5 microns or less (PM2.5) is a significant type of air pollution that affects human health due to its ability to persist in the atmosphere and penetrate the respiratory system. Accurate forecasting of particulate matter is crucial for the healthcare sector of any country. To achieve this, in the current work, a new time series ensemble approach is proposed based on various linear (autoregressive, simple exponential smoothing, autoregressive moving average, and theta) and nonlinear (nonparametric autoregressive and neural network autoregressive) models. Three ensemble models are also developed, each employing distinct weighting strategies: equal distribution of weight among all single models (ESME), weight assignment based on training average accuracy errors (ESMT), and weight assignment based on validation mean accuracy measures (ESMV). This technique was applied to daily PM2.5 concentration data from 1 January 2019, to 31 May 2023, in Pakistan’s main cities, including Lahore, Karachi, Peshawar, and Islamabad, to forecast short-term PM2.5 concentrations. When compared to other models, the best ensemble model (ESMV) demonstrated mean errors ranging from 3.60% to 25.79% in Islamabad, 0.81%–13.52% in Lahore, 1.08%–7.06% in Karachi, and 1.09%–12.11% in Peshawar. These results indicate that the proposed ensemble approach is more efficient and accurate for short-term PM2.5 forecasting than existing models. Furthermore, using the best ensemble model, a forecast was made for the next 15 days (June 1 to 15 June 2023). The forecast showed that in Lahore, the highest PM2.5 value (236.00 μg/m3) was observed on 8 June 2023. Other days also displayed higher and poor air quality throughout the 15 days. Conversely, Karachi experienced moderate PM2.5 concentration levels between 50 μg/m3 and 80 μg/m3. In Peshawar, the PM2.5 concentration levels were consistently unhealthy, with the highest peak (153.00 μg/m3) observed on 9 June 2023. This forecasting experience can assist environmental monitoring organizations in implementing cost-effective planning to minimize air pollution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用独特的集合技术对 PM2.5 进行短期预测,以采取积极主动的环境管理措施
直径为 2.5 微米或更小的颗粒物(PM2.5)是一种重要的空气污染,由于其能够在大气中持续存在并穿透呼吸系统,因此会影响人体健康。准确预测颗粒物对任何国家的医疗保健部门都至关重要。为此,本研究提出了一种基于各种线性(自回归、简单指数平滑、自回归移动平均和 Theta)和非线性(非参数自回归和神经网络自回归)模型的新时间序列集合方法。此外,还开发了三种集合模型,每种模型都采用了不同的加权策略:在所有单一模型之间平均分配权重(ESME)、基于训练平均精度误差的权重分配(ESMT)和基于验证平均精度测量的权重分配(ESMV)。该技术应用于巴基斯坦主要城市(包括拉合尔、卡拉奇、白沙瓦和伊斯兰堡)2019 年 1 月 1 日至 2023 年 5 月 31 日的 PM2.5 浓度日数据,以预测短期 PM2.5 浓度。与其他模型相比,最佳集合模型(ESMV)在伊斯兰堡的平均误差为 3.60% 到 25.79%,在拉合尔为 0.81%-13.52%,在卡拉奇为 1.08%-7.06%,在白沙瓦为 1.09%-12.11%。这些结果表明,与现有模型相比,建议的集合方法在短期 PM2.5 预测方面更有效、更准确。此外,利用最佳集合模型,对未来 15 天(2023 年 6 月 1 日至 6 月 15 日)进行了预测。预测结果显示,拉合尔的 PM2.5 最高值(236.00 微克/立方米)出现在 2023 年 6 月 8 日。在这 15 天中,其他日子的空气质量也较高和较差。相反,卡拉奇的 PM2.5 浓度处于 50 μg/m3 到 80 μg/m3 之间的中等水平。在白沙瓦,PM2.5 浓度水平一直处于不健康状态,最高峰出现在 2023 年 6 月 9 日(153.00 微克/立方米)。这一预测经验有助于环境监测机构实施具有成本效益的规划,最大限度地减少空气污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Environmental Science
Frontiers in Environmental Science Environmental Science-General Environmental Science
CiteScore
4.50
自引率
8.70%
发文量
2276
审稿时长
12 weeks
期刊介绍: Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions. Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.
期刊最新文献
Spatial distribution of available phosphorus in surface road and trackway surface materials on a sheep farm in Ireland Heavy metal changes related to land use changes in a karst area: a case study in Changshun, Guizhou Province, China Long-term trends in water transparency of Tibetan Plateau lakes and the response to extreme climate events Carbon neutralization frontier tracking Occurrence, sustainable treatment technologies, potential sources, and future prospects of emerging pollutants in aquatic environments: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1