{"title":"Short-term PM2.5 forecasting using a unique ensemble technique for proactive environmental management initiatives","authors":"Hasnain Iftikhar, Moiz Qureshi, Justyna Zywiołek, Javier Linkolk López-Gonzales, Olayan Albalawi","doi":"10.3389/fenvs.2024.1442644","DOIUrl":null,"url":null,"abstract":"Particulate matter with a diameter of 2.5 microns or less (<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula>) is a significant type of air pollution that affects human health due to its ability to persist in the atmosphere and penetrate the respiratory system. Accurate forecasting of particulate matter is crucial for the healthcare sector of any country. To achieve this, in the current work, a new time series ensemble approach is proposed based on various linear (autoregressive, simple exponential smoothing, autoregressive moving average, and theta) and nonlinear (nonparametric autoregressive and neural network autoregressive) models. Three ensemble models are also developed, each employing distinct weighting strategies: equal distribution of weight among all single models (ESME), weight assignment based on training average accuracy errors (ESMT), and weight assignment based on validation mean accuracy measures (ESMV). This technique was applied to daily <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration data from 1 January 2019, to 31 May 2023, in Pakistan’s main cities, including Lahore, Karachi, Peshawar, and Islamabad, to forecast short-term <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentrations. When compared to other models, the best ensemble model (ESMV) demonstrated mean errors ranging from 3.60% to 25.79% in Islamabad, 0.81%–13.52% in Lahore, 1.08%–7.06% in Karachi, and 1.09%–12.11% in Peshawar. These results indicate that the proposed ensemble approach is more efficient and accurate for short-term <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> forecasting than existing models. Furthermore, using the best ensemble model, a forecast was made for the next 15 days (June 1 to 15 June 2023). The forecast showed that in Lahore, the highest <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> value (236.00 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>) was observed on 8 June 2023. Other days also displayed higher and poor air quality throughout the 15 days. Conversely, Karachi experienced moderate <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration levels between 50 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula> and 80 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>. In Peshawar, the <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mtext>PM</mml:mtext></mml:mrow><mml:mrow><mml:mn>2.5</mml:mn></mml:mrow></mml:msub></mml:math></jats:inline-formula> concentration levels were consistently unhealthy, with the highest peak (153.00 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>) observed on 9 June 2023. This forecasting experience can assist environmental monitoring organizations in implementing cost-effective planning to minimize air pollution.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"60 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1442644","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate matter with a diameter of 2.5 microns or less (PM2.5) is a significant type of air pollution that affects human health due to its ability to persist in the atmosphere and penetrate the respiratory system. Accurate forecasting of particulate matter is crucial for the healthcare sector of any country. To achieve this, in the current work, a new time series ensemble approach is proposed based on various linear (autoregressive, simple exponential smoothing, autoregressive moving average, and theta) and nonlinear (nonparametric autoregressive and neural network autoregressive) models. Three ensemble models are also developed, each employing distinct weighting strategies: equal distribution of weight among all single models (ESME), weight assignment based on training average accuracy errors (ESMT), and weight assignment based on validation mean accuracy measures (ESMV). This technique was applied to daily PM2.5 concentration data from 1 January 2019, to 31 May 2023, in Pakistan’s main cities, including Lahore, Karachi, Peshawar, and Islamabad, to forecast short-term PM2.5 concentrations. When compared to other models, the best ensemble model (ESMV) demonstrated mean errors ranging from 3.60% to 25.79% in Islamabad, 0.81%–13.52% in Lahore, 1.08%–7.06% in Karachi, and 1.09%–12.11% in Peshawar. These results indicate that the proposed ensemble approach is more efficient and accurate for short-term PM2.5 forecasting than existing models. Furthermore, using the best ensemble model, a forecast was made for the next 15 days (June 1 to 15 June 2023). The forecast showed that in Lahore, the highest PM2.5 value (236.00 μg/m3) was observed on 8 June 2023. Other days also displayed higher and poor air quality throughout the 15 days. Conversely, Karachi experienced moderate PM2.5 concentration levels between 50 μg/m3 and 80 μg/m3. In Peshawar, the PM2.5 concentration levels were consistently unhealthy, with the highest peak (153.00 μg/m3) observed on 9 June 2023. This forecasting experience can assist environmental monitoring organizations in implementing cost-effective planning to minimize air pollution.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.