Resampling as a Robust Measure of Model Complexity in PARAFAC Models

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2024-09-05 DOI:10.1002/cem.3601
Helene Fog Froriep Halberg, Marta Bevilacqua, Åsmund Rinnan
{"title":"Resampling as a Robust Measure of Model Complexity in PARAFAC Models","authors":"Helene Fog Froriep Halberg, Marta Bevilacqua, Åsmund Rinnan","doi":"10.1002/cem.3601","DOIUrl":null,"url":null,"abstract":"Fluorescence spectroscopy has been applied for analysis of complex samples, such as food and beverages. Parallel factor analysis (PARAFAC) is a well‐known decomposition method for fluorescence excitation–emission matrices (EEMs). When the complexity of the system increases, it becomes considerably more difficult to determine the optimal number of PARAFAC components, especially when the fluorophores of the system are unknown. The two commonly applied diagnostics, core consistency and split‐half analysis, appear to underestimate the model complexity due to covarying components and local minima, respectively. As a more robust alternative, we propose a resampling approach with multiple initializations and submodel comparisons for estimating the optimal number of PARAFAC components in complex data.","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"21 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cem.3601","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence spectroscopy has been applied for analysis of complex samples, such as food and beverages. Parallel factor analysis (PARAFAC) is a well‐known decomposition method for fluorescence excitation–emission matrices (EEMs). When the complexity of the system increases, it becomes considerably more difficult to determine the optimal number of PARAFAC components, especially when the fluorophores of the system are unknown. The two commonly applied diagnostics, core consistency and split‐half analysis, appear to underestimate the model complexity due to covarying components and local minima, respectively. As a more robust alternative, we propose a resampling approach with multiple initializations and submodel comparisons for estimating the optimal number of PARAFAC components in complex data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将重采样作为 PARAFAC 模型复杂性的稳健衡量标准
荧光光谱法已被用于分析食品和饮料等复杂样品。平行因子分析(PARAFAC)是一种著名的荧光激发-发射矩阵(EEM)分解方法。当系统的复杂性增加时,确定 PARAFAC 成分的最佳数量就变得相当困难,尤其是当系统中的荧光团未知时。两种常用的诊断方法--核心一致性和分割半分析--似乎分别由于共变成分和局部最小值而低估了模型的复杂性。作为一种更稳健的替代方法,我们提出了一种具有多重初始化和子模型比较的重采样方法,用于估计复杂数据中 PARAFAC 成分的最佳数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Issue Information Cover Image Past, Present and Future of Research in Analytical Figures of Merit Analytical Figures of Merit in Univariate, Multivariate, and Multiway Calibration: What Have We Learned? What Do We Still Need to Learn? Paul Geladi (1951–2024) Chemometrician, spectroscopist and pioneer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1