Improving Non-Autoregressive Translation Quality With Pretrained Language Model, Embedding Distillation and Upsampling Strategy for CTC

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-09-12 DOI:10.1109/TASLP.2024.3451977
Shen-sian Syu;Juncheng Xie;Hung-yi Lee
{"title":"Improving Non-Autoregressive Translation Quality With Pretrained Language Model, Embedding Distillation and Upsampling Strategy for CTC","authors":"Shen-sian Syu;Juncheng Xie;Hung-yi Lee","doi":"10.1109/TASLP.2024.3451977","DOIUrl":null,"url":null,"abstract":"Non-autoregressive approaches, especially those that generate output in a one-pass forward manner, have shown great potential in improving the inference speed of translation models. However, these approaches often suffer from a significant drop in translation quality compared to autoregressive models (AT). To tackle this challenge, this paper introduces a series of innovative techniques to enhance the translation quality of non-autoregressive neural machine translation (NAT) models while still maintaining a substantial acceleration in inference speed. Specifically, we propose a method called CTCPMLM, which involves fine-tuning Pretrained Multilingual Language Models (PMLMs) with the Connectionist Temporal Classification (CTC) loss to effectively train NAT models. Additionally, we adopt the MASK insertion scheme instead of token duplication for up-sampling and present an embedding distillation method to further enhance the performance of NAT models. In our experiments, CTCPMLM surpasses the performance of the baseline autoregressive model (Transformer \n<italic>base</i>\n) on various datasets, including WMT'14 DE \n<inline-formula><tex-math>$\\leftrightarrow$</tex-math></inline-formula>\n EN, WMT'16 RO \n<inline-formula><tex-math>$\\leftrightarrow$</tex-math></inline-formula>\n EN, and IWSLT'14 DE \n<inline-formula><tex-math>$\\leftrightarrow$</tex-math></inline-formula>\n EN. Moreover, CTCPMLM represents the current state-of-the-art among NAT models. Notably, our model achieves superior results compared to the baseline autoregressive model on the IWSLT'14 En \n<inline-formula><tex-math>$\\leftrightarrow$</tex-math></inline-formula>\n De and WMT'16 En \n<inline-formula><tex-math>$\\leftrightarrow$</tex-math></inline-formula>\n Ro datasets, even without using distillation data during training. Particularly, on the IWSLT'14 DE \n<inline-formula><tex-math>$\\rightarrow$</tex-math></inline-formula>\n EN dataset, our model achieves an impressive BLEU score of 39.93, surpassing AT models and establishing a new state-of-the-art. Additionally, our model exhibits a remarkable speed improvement of 16.35 times compared to the autoregressive model.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4121-4133"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679261/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-autoregressive approaches, especially those that generate output in a one-pass forward manner, have shown great potential in improving the inference speed of translation models. However, these approaches often suffer from a significant drop in translation quality compared to autoregressive models (AT). To tackle this challenge, this paper introduces a series of innovative techniques to enhance the translation quality of non-autoregressive neural machine translation (NAT) models while still maintaining a substantial acceleration in inference speed. Specifically, we propose a method called CTCPMLM, which involves fine-tuning Pretrained Multilingual Language Models (PMLMs) with the Connectionist Temporal Classification (CTC) loss to effectively train NAT models. Additionally, we adopt the MASK insertion scheme instead of token duplication for up-sampling and present an embedding distillation method to further enhance the performance of NAT models. In our experiments, CTCPMLM surpasses the performance of the baseline autoregressive model (Transformer base ) on various datasets, including WMT'14 DE $\leftrightarrow$ EN, WMT'16 RO $\leftrightarrow$ EN, and IWSLT'14 DE $\leftrightarrow$ EN. Moreover, CTCPMLM represents the current state-of-the-art among NAT models. Notably, our model achieves superior results compared to the baseline autoregressive model on the IWSLT'14 En $\leftrightarrow$ De and WMT'16 En $\leftrightarrow$ Ro datasets, even without using distillation data during training. Particularly, on the IWSLT'14 DE $\rightarrow$ EN dataset, our model achieves an impressive BLEU score of 39.93, surpassing AT models and establishing a new state-of-the-art. Additionally, our model exhibits a remarkable speed improvement of 16.35 times compared to the autoregressive model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用预训练语言模型、嵌入式蒸馏和上采样策略提高 CTC 的非自回归翻译质量
非自回归方法,特别是那些以单程前向方式生成输出的方法,在提高翻译模型的推理速度方面显示出巨大的潜力。然而,与自回归模型(AT)相比,这些方法的翻译质量往往会大幅下降。为了应对这一挑战,本文介绍了一系列创新技术,以提高非自回归神经机器翻译(NAT)模型的翻译质量,同时仍能保持推理速度的大幅提升。具体来说,我们提出了一种名为 CTCPMLM 的方法,该方法涉及利用连接时序分类(CTC)损失对预处理多语言语言模型(PMLM)进行微调,从而有效地训练 NAT 模型。此外,我们还采用 MASK 插入方案代替标记复制进行上采样,并提出了一种嵌入蒸馏方法,以进一步提高 NAT 模型的性能。在我们的实验中,CTCPMLM 在各种数据集(包括 WMT'14 DE $\leftrightarrow$ EN、WMT'16 RO $\leftrightarrow$ EN 和 IWSLT'14 DE $\leftrightarrow$ EN)上的性能都超过了基准自回归模型(Transformer base)。此外,CTCPMLM 代表了当前 NAT 模型的最先进水平。值得注意的是,与基线自回归模型相比,我们的模型在 IWSLT'14 En $\leftrightarrow$ De 和 WMT'16 En $\leftrightarrow$ Ro 数据集上取得了更好的结果,即使在训练过程中不使用蒸馏数据。特别是在IWSLT'14 DE $\rightarrow$ EN数据集上,我们的模型取得了令人印象深刻的BLEU分数39.93,超过了AT模型,建立了新的先进水平。此外,与自回归模型相比,我们的模型速度显著提高了 16.35 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
CLAPSep: Leveraging Contrastive Pre-Trained Model for Multi-Modal Query-Conditioned Target Sound Extraction Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FTDKD: Frequency-Time Domain Knowledge Distillation for Low-Quality Compressed Audio Deepfake Detection ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling Proper Error Estimation and Calibration for Attention-Based Encoder-Decoder Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1