Magnetic proximity effect in superconductor/ferromagnet van der Waals heterostructures: dependence on the number of superconducting monolayers

A. S. Ianovskaia, G. A. Bobkov, A. M. Bobkov, I. V. Bobkova
{"title":"Magnetic proximity effect in superconductor/ferromagnet van der Waals heterostructures: dependence on the number of superconducting monolayers","authors":"A. S. Ianovskaia, G. A. Bobkov, A. M. Bobkov, I. V. Bobkova","doi":"arxiv-2409.04227","DOIUrl":null,"url":null,"abstract":"The magnetic proximity effect in superconductor/ferromagnet (S/F)\nheterostructures leads to a suppression of the superconducting order parameter\nand appearance of spin splitting of the local electronic density of states\n(LDOS). In classical thin-film heterostructures with a large number of atomic\nlayers it has been well studied. However, with the discovery of 2D materials\nthat open up unprecedented opportunities for the design of new functional\nmaterials, an intensive study of proximity effects in van der Waals (vdW) S/F\nheterostructures has begun. In particular, it was shown that in monolayer\nS/monolayer F heterostructures the physical mechanism of the proximity effect\nis determined by the hybridization of their electronic states, what makes its\nobservable manifestations completely different from the classical results and\nallows for effective control over the proximity effect using gate voltage. Here\nwe demonstrate that the hybridization mechanism of the proximity effect clearly\nmanifests itself in the evolution of the magnetic proximity effect in vdW S/F\nheterostructures with varying number of the superconducting layers. In\nparticular, the number of superconducting layers determines the number of\nminima in the dependence of the order parameter on the ferromagnetic exchange\nfield and gating. The spin splitting of the LDOS is very unusual and in general\ncannot be described by an effective Zeeman field. Physical reasons of such a\nbehavior and possible experimental manifestations are discussed in details.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic proximity effect in superconductor/ferromagnet (S/F) heterostructures leads to a suppression of the superconducting order parameter and appearance of spin splitting of the local electronic density of states (LDOS). In classical thin-film heterostructures with a large number of atomic layers it has been well studied. However, with the discovery of 2D materials that open up unprecedented opportunities for the design of new functional materials, an intensive study of proximity effects in van der Waals (vdW) S/F heterostructures has begun. In particular, it was shown that in monolayer S/monolayer F heterostructures the physical mechanism of the proximity effect is determined by the hybridization of their electronic states, what makes its observable manifestations completely different from the classical results and allows for effective control over the proximity effect using gate voltage. Here we demonstrate that the hybridization mechanism of the proximity effect clearly manifests itself in the evolution of the magnetic proximity effect in vdW S/F heterostructures with varying number of the superconducting layers. In particular, the number of superconducting layers determines the number of minima in the dependence of the order parameter on the ferromagnetic exchange field and gating. The spin splitting of the LDOS is very unusual and in general cannot be described by an effective Zeeman field. Physical reasons of such a behavior and possible experimental manifestations are discussed in details.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超导体/铁磁体范德华异质结构中的磁接近效应:与超导单层数量的关系
超导体/铁磁体(S/F)异质结构中的磁接近效应会导致超导有序参数的抑制和局部电子态密度(LDOS)自旋分裂的出现。在具有大量原子层的经典薄膜异质结构中,这种现象已经得到了很好的研究。然而,随着二维材料的发现为新型功能材料的设计带来了前所未有的机遇,人们开始深入研究范德华(vdW)S/F 异质结构中的邻近效应。研究特别表明,在单层 S/ 单层 F 异质结构中,邻近效应的物理机制是由其电子态的杂化决定的,这使得其可观察到的表现形式与经典结果完全不同,并允许使用栅极电压对邻近效应进行有效控制。在这里,我们证明了邻近效应的杂化机制在不同超导层数的 vdW S/Fheterostructures 中磁性邻近效应的演化过程中得到了清晰的体现。特别是,超导层的数量决定了有序参数对铁磁交换场和门控的依赖性的最小值数量。LDOS 的自旋分裂非常不寻常,一般无法用有效的泽曼场来描述。本文详细讨论了这种行为的物理原因和可能的实验表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying inflated Fermi surfaces via thermoelectric response in $d$-wave superconductor heterostructure Exploring functionalized Zr$_2$N and Sc$_2$N MXenes as superconducting candidates with $\textit{ab initio}$ calculations Unconventional gate-induced superconductivity in transition-metal dichalcogenides Spatially-resolved dynamics of the amplitude Schmid-Higgs mode in disordered superconductors Time-Reversal Symmetry Breaking in Re-Based Kagome Lattice Superconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1