Annalisa Apicella, Giovanna Molinari, Vito Gigante, Arianna Pietrosanto, Loredana Incarnato, Laura Aliotta, Andrea Lazzeri
{"title":"Poly(lactic acid) (PLA)/poly(butylene succinate adipate) (PBSA) films with Micro fibrillated cellulose (MFC) and cardanol for packaging applications","authors":"Annalisa Apicella, Giovanna Molinari, Vito Gigante, Arianna Pietrosanto, Loredana Incarnato, Laura Aliotta, Andrea Lazzeri","doi":"10.1007/s10570-024-06127-w","DOIUrl":null,"url":null,"abstract":"<div><p>Micro Fibrillated Cellulose (MFC) has emerged as a promising component in film formulations due to its unique barrier prope.rties. In this study, to best of our knowledge, cardanol, a biobased plasticizer derived from cashew processing, was employed for the first time, as a dispersing aid for MFC, during a liquid assisted extrusion technique with a Poly(lactic acid) (PLA)/Poly(butylene succinate adipate) (PBSA) blend. The aim of the work is the production of PLA/PBSA/MFC films for packaging applications. The addition of different MFC amount was investigated (added at 0.5, 0.75 and 1 wt.% concentrations). The results obtained are very interesting, in fact from one hand Cardanol improved the compatibility between PLA and PBSA and avoided the MFC agglomeration. On the other hand, micro fibrillated cellulose ensured a stable film blowing and the achievement of enhanced barrier properties, seal ability and mechanical resistance. In particular, the best result was obtained with an MFC content of 0.75 wt.% for which a good compromise in terms of films ductility, barrier properties and seal ability was achieved.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 15","pages":"9173 - 9190"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06127-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06127-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Micro Fibrillated Cellulose (MFC) has emerged as a promising component in film formulations due to its unique barrier prope.rties. In this study, to best of our knowledge, cardanol, a biobased plasticizer derived from cashew processing, was employed for the first time, as a dispersing aid for MFC, during a liquid assisted extrusion technique with a Poly(lactic acid) (PLA)/Poly(butylene succinate adipate) (PBSA) blend. The aim of the work is the production of PLA/PBSA/MFC films for packaging applications. The addition of different MFC amount was investigated (added at 0.5, 0.75 and 1 wt.% concentrations). The results obtained are very interesting, in fact from one hand Cardanol improved the compatibility between PLA and PBSA and avoided the MFC agglomeration. On the other hand, micro fibrillated cellulose ensured a stable film blowing and the achievement of enhanced barrier properties, seal ability and mechanical resistance. In particular, the best result was obtained with an MFC content of 0.75 wt.% for which a good compromise in terms of films ductility, barrier properties and seal ability was achieved.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.