Quantitative site-specific glycoproteomics by ZenoTOF reveals glyco-signatures for breast cancer diagnosis

Yi Yang, Dan Zhao, Ji Luo, Ling Lin, Yuxiang Lin, Baozhen Shan, Hongxu Chen, Liang Qiao
{"title":"Quantitative site-specific glycoproteomics by ZenoTOF reveals glyco-signatures for breast cancer diagnosis","authors":"Yi Yang, Dan Zhao, Ji Luo, Ling Lin, Yuxiang Lin, Baozhen Shan, Hongxu Chen, Liang Qiao","doi":"10.1101/2024.09.08.611557","DOIUrl":null,"url":null,"abstract":"Intact glycopeptide characterization by mass spectrometry has proven a versatile tool for site-specific glycoproteomics analysis and biomarker screening. Here, we present a method using the ZenoTOF instrument with optimized fragmentation for intact glycopeptide identification and demonstrate its ability to analyze large-cohort glycoproteomes. From 124 clinical serum samples of breast cancer, non-cancerous diseases, and non-disease controls, a total of 6901 unique site-specific glycans on 807 glycosites of proteins were detected. Much more differences of glycoproteome were observed in breast diseases than the proteome. By employing machine learning, 15 site-specific glycans were determined as potential glyco-signatures in detecting breast cancer. The results demonstrate that our method provides a powerful tool in glycoproteomic analyses for biomarker discovery studies.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.611557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intact glycopeptide characterization by mass spectrometry has proven a versatile tool for site-specific glycoproteomics analysis and biomarker screening. Here, we present a method using the ZenoTOF instrument with optimized fragmentation for intact glycopeptide identification and demonstrate its ability to analyze large-cohort glycoproteomes. From 124 clinical serum samples of breast cancer, non-cancerous diseases, and non-disease controls, a total of 6901 unique site-specific glycans on 807 glycosites of proteins were detected. Much more differences of glycoproteome were observed in breast diseases than the proteome. By employing machine learning, 15 site-specific glycans were determined as potential glyco-signatures in detecting breast cancer. The results demonstrate that our method provides a powerful tool in glycoproteomic analyses for biomarker discovery studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ZenoTOF 进行定量位点特异性糖蛋白组学研究,揭示用于乳腺癌诊断的糖特征
利用质谱鉴定完整糖肽已被证明是进行特定位点糖蛋白组学分析和生物标记物筛选的多功能工具。在此,我们介绍了一种使用 ZenoTOF 仪器优化片段进行完整糖肽鉴定的方法,并展示了其分析大型组群糖蛋白组的能力。从 124 份乳腺癌、非癌症疾病和非疾病对照的临床血清样本中,我们共检测到 807 个糖蛋白复合体上的 6901 个独特位点特异性聚糖。与蛋白质组相比,在乳腺疾病中观察到的糖蛋白组差异更大。通过机器学习,确定了 15 个位点特异性聚糖作为检测乳腺癌的潜在糖特征。结果表明,我们的方法为生物标志物发现研究的糖蛋白组分析提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans DNFE: Directed-network flow entropy for detecting the tipping points during biological processes Transcriptional program-based deciphering of the MET exon 14 skipping regulation network Mutant p53 Misfolding and Aggregation Precedes Transformation into High-Grade Serous Ovarian Carcinoma Integrative multiomic approaches reveal ZMAT3 and p21 as conserved hubs in the p53 tumor suppression network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1