Urinary multi-omics reveal non-invasive diagnostic biomarkers in clear cell renal cell carcinoma

Gustav Jonsson, Maura Hofmann, Tiago Oliveira, Ursula Lemberger, Karel Stejskal, Gabriela Krssakova, Irma Sakic, Maria Novatchkova, Stefan Mereiter, Gerlinde Grabmann, Thomas Koecher, Zeljko Kikic, Gerald N. Rechberger, Thomas Zuellig, Bernhard Englinger, Manuela Schmidinger, Josef M. Penninger
{"title":"Urinary multi-omics reveal non-invasive diagnostic biomarkers in clear cell renal cell carcinoma","authors":"Gustav Jonsson, Maura Hofmann, Tiago Oliveira, Ursula Lemberger, Karel Stejskal, Gabriela Krssakova, Irma Sakic, Maria Novatchkova, Stefan Mereiter, Gerlinde Grabmann, Thomas Koecher, Zeljko Kikic, Gerald N. Rechberger, Thomas Zuellig, Bernhard Englinger, Manuela Schmidinger, Josef M. Penninger","doi":"10.1101/2024.08.12.607453","DOIUrl":null,"url":null,"abstract":"Clear cell renal cell carcinoma (ccRCC) is the kidney malignancy with the highest incidence and mortality rates. Despite the high patient burden, there are no biomarkers for rapid diagnosis and public health surveillance. Urine would be an ideal source of ccRCC biomarkers due to the low invasiveness, easy accessibility, and the kidney's intrinsic role in filtering urine. In the present work, by combining proteomics, lipidomics and metabolomics, we detected urogenital metabolic dysregulation in ccRCC patients with increased lipid metabolism, altered mitochondrial respiration signatures and increased urinary lipid content. Importantly, we identify three early-stage diagnostic biomarkers for ccRCC in urine samples: Serum amyloid A1 (SAA1), Haptoglobin (HP) and Lipocalin 15 (LCN15). We further implemented a parallel reaction monitoring mass spectrometry protocol for rapid and sensitive detection of SAA1, HP and LCN15 and combined all three proteins into a diagnostic UrineScore. In our discovery cohort, this score had a performance accuracy of 96% in receiver operating characteristic curve (ROC) analysis for classification of ccRCC versus control cases. Our data identifies tractable and highly efficacious urinary biomarkers for ccRCC diagnosis and serve as a first step towards the development of more rapid and accessible urinary diagnostic platforms.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.12.607453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clear cell renal cell carcinoma (ccRCC) is the kidney malignancy with the highest incidence and mortality rates. Despite the high patient burden, there are no biomarkers for rapid diagnosis and public health surveillance. Urine would be an ideal source of ccRCC biomarkers due to the low invasiveness, easy accessibility, and the kidney's intrinsic role in filtering urine. In the present work, by combining proteomics, lipidomics and metabolomics, we detected urogenital metabolic dysregulation in ccRCC patients with increased lipid metabolism, altered mitochondrial respiration signatures and increased urinary lipid content. Importantly, we identify three early-stage diagnostic biomarkers for ccRCC in urine samples: Serum amyloid A1 (SAA1), Haptoglobin (HP) and Lipocalin 15 (LCN15). We further implemented a parallel reaction monitoring mass spectrometry protocol for rapid and sensitive detection of SAA1, HP and LCN15 and combined all three proteins into a diagnostic UrineScore. In our discovery cohort, this score had a performance accuracy of 96% in receiver operating characteristic curve (ROC) analysis for classification of ccRCC versus control cases. Our data identifies tractable and highly efficacious urinary biomarkers for ccRCC diagnosis and serve as a first step towards the development of more rapid and accessible urinary diagnostic platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尿液多组学揭示透明细胞肾细胞癌的非侵入性诊断生物标记物
透明细胞肾细胞癌(ccRCC)是发病率和死亡率最高的肾脏恶性肿瘤。尽管患者负担很重,但目前还没有用于快速诊断和公共卫生监测的生物标志物。尿液是ccRCC生物标记物的理想来源,因为尿液侵袭性小、容易获取,而且肾脏在过滤尿液方面发挥着固有作用。在本研究中,我们结合蛋白质组学、脂质组学和代谢组学,检测到ccRCC患者的尿液代谢失调,包括脂质代谢增加、线粒体呼吸特征改变和尿液脂质含量增加。重要的是,我们在尿液样本中发现了三种早期诊断 ccRCC 的生物标志物:血清淀粉样蛋白 A1 (SAA1)、aptoglobin (HP) 和 Lipocalin 15 (LCN15)。我们进一步实施了平行反应监测质谱协议,以快速灵敏地检测 SAA1、HP 和 LCN15,并将所有这三种蛋白质合并为诊断性尿液评分(UrineScore)。在我们的发现队列中,该评分在ccRCC与对照病例分类的接收器操作特征曲线(ROC)分析中准确率高达96%。我们的数据为ccRCC诊断确定了可操作性强且高效的尿液生物标记物,为开发更快速、更便捷的尿液诊断平台迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans DNFE: Directed-network flow entropy for detecting the tipping points during biological processes Transcriptional program-based deciphering of the MET exon 14 skipping regulation network Mutant p53 Misfolding and Aggregation Precedes Transformation into High-Grade Serous Ovarian Carcinoma Integrative multiomic approaches reveal ZMAT3 and p21 as conserved hubs in the p53 tumor suppression network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1