PPM1D truncation-associated overexpression of the stress-related protein NQO1 confers sensitivity to the bioactivatable drug IB-DNQ in diffuse intrinsic pontine glioma
{"title":"PPM1D truncation-associated overexpression of the stress-related protein NQO1 confers sensitivity to the bioactivatable drug IB-DNQ in diffuse intrinsic pontine glioma","authors":"Maxime Janin","doi":"10.1101/2024.09.05.611476","DOIUrl":null,"url":null,"abstract":"Diffuse intrinsic pontine glioma (DIPG) is a very aggressive brainstem tumor with poor survival and a lack of effective treatments. In this study, I observed the differential overexpression of the stress-related protein NAD(P)H Quinone Dehydrogenase 1 (NQO1) in some patient-derived DIPG cell lines and tumors. I sought to understand how this protein is regulated in DIPG and to investigate the therapeutic potential of the NQO1-bioactivatable drug Isobutyl-deoxynyboquinone (IB-DNQ). Interestingly, the study of the mutational profiles of the cell lines indicated that truncation of PPM1D correlated with NQO1 overexpression. From a functional standpoint, cellular models were utilized to unravel the link between PPM1D phosphatase and NQO1 expression in DIPG by dephosphorylating MDM2 serine 395, leading to NQO1 protein stabilization. From a therapeutic perspective, IB-DNQ treatment showed an NQO1-dependent growth inhibition sensitivity in vitro and induced an extended survival in vivo. Overall, my results reveal a new regulation of NQO1 at the protein level in PPM1D-mutated DIPG indicating a promising therapeutic approach.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a very aggressive brainstem tumor with poor survival and a lack of effective treatments. In this study, I observed the differential overexpression of the stress-related protein NAD(P)H Quinone Dehydrogenase 1 (NQO1) in some patient-derived DIPG cell lines and tumors. I sought to understand how this protein is regulated in DIPG and to investigate the therapeutic potential of the NQO1-bioactivatable drug Isobutyl-deoxynyboquinone (IB-DNQ). Interestingly, the study of the mutational profiles of the cell lines indicated that truncation of PPM1D correlated with NQO1 overexpression. From a functional standpoint, cellular models were utilized to unravel the link between PPM1D phosphatase and NQO1 expression in DIPG by dephosphorylating MDM2 serine 395, leading to NQO1 protein stabilization. From a therapeutic perspective, IB-DNQ treatment showed an NQO1-dependent growth inhibition sensitivity in vitro and induced an extended survival in vivo. Overall, my results reveal a new regulation of NQO1 at the protein level in PPM1D-mutated DIPG indicating a promising therapeutic approach.