Ping-Feng Chi, Jing-Jie Wang, Jing-Wen Zhang, Yung-Lan Chuang, Ming-Lun Lee and Jinn-Kong Sheu
{"title":"Low-resistivity Ohmic contacts of Ti/Al on few-layered 1T′-MoTe2/2H-MoTe2 heterojunctions grown by chemical vapor deposition†","authors":"Ping-Feng Chi, Jing-Jie Wang, Jing-Wen Zhang, Yung-Lan Chuang, Ming-Lun Lee and Jinn-Kong Sheu","doi":"10.1039/D4NH00347K","DOIUrl":null,"url":null,"abstract":"<p >This study explores the phase-controlled growth of few-layered 2H-MoTe<small><sub>2</sub></small>, 1T′-MoTe<small><sub>2</sub></small>, and 2H-/1T′-MoTe<small><sub>2</sub></small> heterostructures and their impacts on metal contact properties. Cold-wall chemical vapor deposition (CW-CVD) with varying growth rates of MoO<small><sub><em>x</em></sub></small> and reaction temperatures with Te vapors enabled the growth of continuous thin films of either 1T′-MoTe<small><sub>2</sub></small> or 2H-MoTe<small><sub>2</sub></small> phases on two-inch sapphire substrates. This methodology facilitates the meticulous optimization of chemical vapor deposition (CVD) parameters, enabling the realization of phase-controlled growth of few-layered MoTe<small><sub>2</sub></small> thin films and their subsequent heterostructures. The study further investigates the influence of a 1T′-MoTe<small><sub>2</sub></small> intermediate layer on the electrical properties of metal contacts on few-layered 2H-MoTe<small><sub>2</sub></small>. Bi-layer Ti/Al contacts directly deposited on 2H-MoTe<small><sub>2</sub></small> exhibited Schottky behavior, indicating inefficient carrier transport. However, introducing a few-layered 1T′-MoTe<small><sub>2</sub></small> intermediate layer between the metal and 2H-MoTe<small><sub>2</sub></small> layers improved the contact characteristics significantly. The resulting Al/Ti/1T′-MoTe<small><sub>2</sub></small>/2H-MoTe<small><sub>2</sub></small> contact scheme demonstrates Ohmic behavior with a specific contact resistance of around 1.7 × 10<small><sup>−4</sup></small> Ω cm<small><sup>2</sup></small>. This substantial improvement is attributed to the high carrier concentration of the 1T′-MoTe<small><sub>2</sub></small> intermediate layer which could be attributed tentatively to the increased tunneling events across the van der Waals gap and enhancing carrier transport between the metal and 2H-MoTe<small><sub>2</sub></small>.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 2060-2066"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00347k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the phase-controlled growth of few-layered 2H-MoTe2, 1T′-MoTe2, and 2H-/1T′-MoTe2 heterostructures and their impacts on metal contact properties. Cold-wall chemical vapor deposition (CW-CVD) with varying growth rates of MoOx and reaction temperatures with Te vapors enabled the growth of continuous thin films of either 1T′-MoTe2 or 2H-MoTe2 phases on two-inch sapphire substrates. This methodology facilitates the meticulous optimization of chemical vapor deposition (CVD) parameters, enabling the realization of phase-controlled growth of few-layered MoTe2 thin films and their subsequent heterostructures. The study further investigates the influence of a 1T′-MoTe2 intermediate layer on the electrical properties of metal contacts on few-layered 2H-MoTe2. Bi-layer Ti/Al contacts directly deposited on 2H-MoTe2 exhibited Schottky behavior, indicating inefficient carrier transport. However, introducing a few-layered 1T′-MoTe2 intermediate layer between the metal and 2H-MoTe2 layers improved the contact characteristics significantly. The resulting Al/Ti/1T′-MoTe2/2H-MoTe2 contact scheme demonstrates Ohmic behavior with a specific contact resistance of around 1.7 × 10−4 Ω cm2. This substantial improvement is attributed to the high carrier concentration of the 1T′-MoTe2 intermediate layer which could be attributed tentatively to the increased tunneling events across the van der Waals gap and enhancing carrier transport between the metal and 2H-MoTe2.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.