Generation of Rule-Based Explanations of CNN Classifiers Using Regional Features

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-09-05 DOI:10.1007/s11063-024-11678-x
William Philipp, R. Yashwanthika, O. K. Sikha, Raul Benitez
{"title":"Generation of Rule-Based Explanations of CNN Classifiers Using Regional Features","authors":"William Philipp, R. Yashwanthika, O. K. Sikha, Raul Benitez","doi":"10.1007/s11063-024-11678-x","DOIUrl":null,"url":null,"abstract":"<p>Although Deep Learning networks generally outperform traditional machine learning approaches based on tailored features, they often lack explainability. To address this issue, numerous methods have been proposed, particularly for image-related tasks such as image classification or object segmentation. These methods generate a heatmap that visually explains the classification problem by identifying the most important regions for the classifier. However, these explanations remain purely visual. To overcome this limitation, we introduce a novel CNN explainability method that identifies the most relevant regions in an image and generates a decision tree based on meaningful regional features, providing a rule-based explanation of the classification model. We evaluated the proposed method on a synthetic blob’s dataset and subsequently applied it to two cell image classification datasets with healthy and pathological patterns.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11678-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although Deep Learning networks generally outperform traditional machine learning approaches based on tailored features, they often lack explainability. To address this issue, numerous methods have been proposed, particularly for image-related tasks such as image classification or object segmentation. These methods generate a heatmap that visually explains the classification problem by identifying the most important regions for the classifier. However, these explanations remain purely visual. To overcome this limitation, we introduce a novel CNN explainability method that identifies the most relevant regions in an image and generates a decision tree based on meaningful regional features, providing a rule-based explanation of the classification model. We evaluated the proposed method on a synthetic blob’s dataset and subsequently applied it to two cell image classification datasets with healthy and pathological patterns.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用区域特征生成基于规则的 CNN 分类器解释
尽管深度学习网络通常优于基于定制特征的传统机器学习方法,但它们往往缺乏可解释性。为了解决这个问题,人们提出了许多方法,尤其是针对图像分类或物体分割等与图像相关的任务。这些方法通过识别分类器最重要的区域生成热图,直观地解释分类问题。然而,这些解释仍然是纯视觉性的。为了克服这一局限性,我们引入了一种新颖的 CNN 可解释性方法,它能识别图像中最相关的区域,并根据有意义的区域特征生成决策树,为分类模型提供基于规则的解释。我们在一个合成 Blob 数据集上对所提出的方法进行了评估,随后将其应用于两个具有健康和病理模式的细胞图像分类数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1