Numerical investigation into the effects of aft deck angle on the flow characteristics of a serpentine nozzle

Liying Jiao, Li Zhou, Jingwei Shi, Zhanxue Wang
{"title":"Numerical investigation into the effects of aft deck angle on the flow characteristics of a serpentine nozzle","authors":"Liying Jiao, Li Zhou, Jingwei Shi, Zhanxue Wang","doi":"10.1177/09544100241276344","DOIUrl":null,"url":null,"abstract":"For modern military aero-engine, the serpentine nozzle with aft deck is deployed to meet the requirements of stealth and integrated design. Different from existing studies which emphasize the rectangular nozzles and corresponding infrared radiation impact, the effect of the aft deck angle on flow characteristics of serpentine nozzles with a focus on the internal flow, the shock system, the jet’s evolution, and the performance parameters are systematically investigated in this paper. This study is carried out through three-dimensional numerical simulations, which are validated by the experiment. The results show that the aft deck with different angles has a significant impact on the overall flow characteristics, such as the static pressure and the three-dimensional shock system, as a result of the asymmetry and the contraction/expansion effects on the jet. Specifically, upward-deflected aft decks lead to a re-compression effect and the variation of the internal static pressure value can be up to 7%, whereas for downward-deflected aft decks, the effect on the internal flow can be neglected in under-expansion conditions. In addition, the aft deck angle and the extent of boundary layer separation greatly affect the thrust performance and the vortex evolution, which determines the downstream evolution of the jet cross-section. Effective thrust coefficient is closely tied to the thrust vector angle, with the coefficient reaching its zenith when the thrust vector angle is closest to 0°. This study reinforces understanding of the interrelated problems and may facilitate the development of the optimal aft deck angle for various applications.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241276344","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

For modern military aero-engine, the serpentine nozzle with aft deck is deployed to meet the requirements of stealth and integrated design. Different from existing studies which emphasize the rectangular nozzles and corresponding infrared radiation impact, the effect of the aft deck angle on flow characteristics of serpentine nozzles with a focus on the internal flow, the shock system, the jet’s evolution, and the performance parameters are systematically investigated in this paper. This study is carried out through three-dimensional numerical simulations, which are validated by the experiment. The results show that the aft deck with different angles has a significant impact on the overall flow characteristics, such as the static pressure and the three-dimensional shock system, as a result of the asymmetry and the contraction/expansion effects on the jet. Specifically, upward-deflected aft decks lead to a re-compression effect and the variation of the internal static pressure value can be up to 7%, whereas for downward-deflected aft decks, the effect on the internal flow can be neglected in under-expansion conditions. In addition, the aft deck angle and the extent of boundary layer separation greatly affect the thrust performance and the vortex evolution, which determines the downstream evolution of the jet cross-section. Effective thrust coefficient is closely tied to the thrust vector angle, with the coefficient reaching its zenith when the thrust vector angle is closest to 0°. This study reinforces understanding of the interrelated problems and may facilitate the development of the optimal aft deck angle for various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后甲板角度对蛇形喷嘴流动特性影响的数值研究
在现代军用航空发动机中,为满足隐身和一体化设计的要求,采用了带有后甲板的蛇形喷嘴。与现有研究强调矩形喷嘴和相应的红外辐射影响不同,本文系统地研究了后甲板角度对蛇形喷嘴流动特性的影响,重点关注内部流动、冲击系统、射流演变和性能参数。该研究通过三维数值模拟进行,并通过实验进行验证。结果表明,由于射流的不对称和收缩/膨胀效应,不同角度的后甲板对静压和三维冲击系统等整体流动特性有显著影响。具体来说,向上偏转的后甲板会导致再压缩效应,内部静压值的变化可达 7%,而对于向下偏转的后甲板,在欠膨胀条件下,对内部流动的影响可以忽略不计。此外,后甲板角度和边界层分离程度对推力性能和涡流演变有很大影响,而涡流演变决定了射流截面的下游演变。有效推力系数与推力矢量角密切相关,当推力矢量角最接近 0° 时,系数达到顶峰。这项研究加强了对相互关联问题的理解,有助于为各种应用开发最佳后甲板角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1