Effect of leaned blades on the aerodynamic performance of contra-rotating open rotor

Qihang Wang, Li Zhou, Zhanxue Wang
{"title":"Effect of leaned blades on the aerodynamic performance of contra-rotating open rotor","authors":"Qihang Wang, Li Zhou, Zhanxue Wang","doi":"10.1177/09544100241276352","DOIUrl":null,"url":null,"abstract":"The contra-rotating open rotor (CROR) engine has gained attention for its outstanding fuel-saving potential. Attention needs to be paid to the propulsion efficiency of the contra-rotating open rotor, as it is the key to realizing the engine’s fuel-saving advantage. In this paper, the performance of CRORs with different lean angles is investigated by numerical simulation. Furthermore, the mechanism of the influence of leaned blades on the propulsion efficiency of the CROR is analyzed. The results show that the positive leaned blades (pressure-surface down) significantly improve the propulsion efficiency of the CROR, with a maximum improvement of 1.34%. In contrast, the negative leaned blades (suction surface down) reduce propulsion efficiency. Due to the radial equilibrium equation, the positive lean increases the radial pressure gradient. The increased gradient enhances flow on the suction surface and reduces the flow reversal region, thus improving the propulsion efficiency. At low advance ratios, the enhanced radial flow due to the leaned blades makes the optimization less effective. By comparing the inlet conditions of the front and rear rotors, it was found that the front rotor was less likely to have a flow reversal region compared to the rear rotor. If a flow reversal region occurs in the channel, it is necessary to introduce leaned blades. The most recommended lean angle is the one that makes the flow reversal region disappear exactly.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241276352","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The contra-rotating open rotor (CROR) engine has gained attention for its outstanding fuel-saving potential. Attention needs to be paid to the propulsion efficiency of the contra-rotating open rotor, as it is the key to realizing the engine’s fuel-saving advantage. In this paper, the performance of CRORs with different lean angles is investigated by numerical simulation. Furthermore, the mechanism of the influence of leaned blades on the propulsion efficiency of the CROR is analyzed. The results show that the positive leaned blades (pressure-surface down) significantly improve the propulsion efficiency of the CROR, with a maximum improvement of 1.34%. In contrast, the negative leaned blades (suction surface down) reduce propulsion efficiency. Due to the radial equilibrium equation, the positive lean increases the radial pressure gradient. The increased gradient enhances flow on the suction surface and reduces the flow reversal region, thus improving the propulsion efficiency. At low advance ratios, the enhanced radial flow due to the leaned blades makes the optimization less effective. By comparing the inlet conditions of the front and rear rotors, it was found that the front rotor was less likely to have a flow reversal region compared to the rear rotor. If a flow reversal region occurs in the channel, it is necessary to introduce leaned blades. The most recommended lean angle is the one that makes the flow reversal region disappear exactly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倾斜叶片对反向旋转开放式转子气动性能的影响
反转开式转子(CROR)发动机因其出色的节油潜力而备受关注。需要注意的是反转开式转子的推进效率,因为它是实现发动机节油优势的关键。本文通过数值模拟研究了不同倾角的反转开式转子的性能。此外,还分析了倾斜叶片对 CROR 推进效率的影响机理。结果表明,正倾角叶片(压面向下)能显著提高 CROR 的推进效率,最大提高幅度为 1.34%。相反,负倾斜叶片(吸力面向下)降低了推进效率。根据径向平衡方程,正倾斜叶片会增加径向压力梯度。梯度的增加增强了吸入面上的流动,减少了流动反向区域,从而提高了推进效率。在低推进比的情况下,倾斜叶片导致的径向流动增强会降低优化效果。通过比较前后转子的进气条件,发现前转子与后转子相比更不容易出现气流反向区域。如果通道中出现流动逆转区域,则有必要引入倾斜叶片。最推荐的倾斜角度是能使逆流区完全消失的角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1