Influence of bioinspired morphing on the flow field characteristics of UAV wings at low Reynolds number

R. Jini Raj, Bruce Ralphin Rose J
{"title":"Influence of bioinspired morphing on the flow field characteristics of UAV wings at low Reynolds number","authors":"R. Jini Raj, Bruce Ralphin Rose J","doi":"10.1177/09544100241274864","DOIUrl":null,"url":null,"abstract":"The aerodynamic performance of unmanned aerial vehicles (UAV) can be improved by optimizing the surface flow characteristics over a wide range of angle of attack (AoA) through novel mechanisms. Recently, the bioinspired camber morphing concept has received greater attention because of the proven ability of nature species towards the retention of aerodynamic performance under different environmental conditions. In particular, birds like Eagles ( Accipitriformes) increase their wing camber in the course of flight to achieve maximum climbing altitude with good manoeuvring capability. The biomimetic designs such as the corrugated bone structure of Eel fish ( Anguilliformes) helps to achieve the wing camber morphing with optimal aerodynamic load distributions. The present work is focused on the bioinspired variable camber morphing (VCM) strategy to enhance the flow control behaviour and aerodynamic forces for a specific UAV wing configuration at various AoA. Here, NACA 4412 airfoil is used as a baseline wing configuration and the camber morphing mechanisms which are derived through Eel fish and Eagle are analysed. The model with Eagle wing morphing (EWM) mechanism is considered as a primary case of VCM and Eel fish’s corrugated structure is taken as a secondary case of VCM model. The coefficient of lift ( C<jats:sub> L</jats:sub> ), coefficient of drag ( C<jats:sub> D</jats:sub>), coefficient of pressure ( C<jats:sub> p</jats:sub>) and endurance factor are estimated for both morphed and baseline wing configurations through high fidelity numerical simulations. Interestingly, it is observed that the EWM wing configuration has excellent surface flow control characteristics than the CSM wing configuration and the results are presented with a detailed discussion.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241274864","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The aerodynamic performance of unmanned aerial vehicles (UAV) can be improved by optimizing the surface flow characteristics over a wide range of angle of attack (AoA) through novel mechanisms. Recently, the bioinspired camber morphing concept has received greater attention because of the proven ability of nature species towards the retention of aerodynamic performance under different environmental conditions. In particular, birds like Eagles ( Accipitriformes) increase their wing camber in the course of flight to achieve maximum climbing altitude with good manoeuvring capability. The biomimetic designs such as the corrugated bone structure of Eel fish ( Anguilliformes) helps to achieve the wing camber morphing with optimal aerodynamic load distributions. The present work is focused on the bioinspired variable camber morphing (VCM) strategy to enhance the flow control behaviour and aerodynamic forces for a specific UAV wing configuration at various AoA. Here, NACA 4412 airfoil is used as a baseline wing configuration and the camber morphing mechanisms which are derived through Eel fish and Eagle are analysed. The model with Eagle wing morphing (EWM) mechanism is considered as a primary case of VCM and Eel fish’s corrugated structure is taken as a secondary case of VCM model. The coefficient of lift ( C L ), coefficient of drag ( C D), coefficient of pressure ( C p) and endurance factor are estimated for both morphed and baseline wing configurations through high fidelity numerical simulations. Interestingly, it is observed that the EWM wing configuration has excellent surface flow control characteristics than the CSM wing configuration and the results are presented with a detailed discussion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物启发变形对低雷诺数下无人机机翼流场特性的影响
无人飞行器(UAV)的气动性能可以通过新的机制在大攻角(AoA)范围内优化表面流动特性来改善。最近,生物启发的外倾角变形概念受到了更多关注,因为自然界的物种在不同环境条件下保持空气动力性能的能力已得到证实。特别是像老鹰(Accipitriformes)这样的鸟类,它们在飞行过程中会增加翅膀的外倾角,以获得最大的爬升高度和良好的机动能力。生物仿生设计,如鳗鱼(鳗形目)的波状骨结构,有助于实现具有最佳空气动力负载分布的翼外倾角变形。本研究的重点是生物启发的可变外倾角变形(VCM)策略,以增强特定无人机机翼配置在不同AoA下的流动控制行为和空气动力。本文使用 NACA 4412 机翼作为基线机翼配置,并分析了通过鳗鱼和鹰衍生的外倾角变形机制。鹰翼变形(EWM)机制的模型被视为 VCM 的主要案例,而鳗鱼的波纹结构被视为 VCM 模型的次要案例。通过高保真数值模拟,估算了变形翼和基线翼配置的升力系数(C L)、阻力系数(C D)、压力系数(C p)和耐力系数。有趣的是,与 CSM 机翼配置相比,EWM 机翼配置具有出色的表面流控制特性,并对结果进行了详细讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1